首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   6篇
  国内免费   3篇
测绘学   1篇
大气科学   20篇
地球物理   35篇
地质学   81篇
海洋学   9篇
天文学   2篇
自然地理   3篇
  2022年   8篇
  2021年   7篇
  2020年   8篇
  2019年   2篇
  2018年   18篇
  2017年   13篇
  2016年   19篇
  2015年   7篇
  2014年   9篇
  2013年   16篇
  2012年   6篇
  2011年   4篇
  2010年   8篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2006年   6篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1978年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
71.
72.
73.
This paper describes two case studies of demand-side water management in the Okanagan region of southern British Columbia, Canada. The case studies reveal important lessons about how local context shapes the process of adaptation; in these cases, adaptation to rising and changing water demand under a regime of increasingly limited supply in a semi-arid region. Both case studies represent examples of water meter implementation, specifically volume-based pricing in a residential area and as a compliance tool in a mainly farming district. While the initiative was successful in the residential setting, agricultural metering met with stiff resistance. These cases suggest many factors shape the character of the adaptation process, including: interpretation of the signal relative to context, newness of the approach, consumer values, and local and provincial political agendas. Although context has been explored in resource management circles, thus far climate change adaptation research has not adequately discussed the embeddedness of adaptation. In other words, how context matters and what aspects of context, unrelated to climate change, could encourage or thwart the act of adapting. This study is a simple illustration of the potential drivers, barriers and enabling factors that have influenced the adaptation process of water management decisions in the Okanagan.  相似文献   
74.
The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the weaknesses of the classic training algorithms, such as trapping in local optima, poor performance in networks with large parameters, over-fitting, and etc. In this study, some evolutionary algorithms, including genetic algorithm (GA), ant colony optimization for continuous domain (ACOR), and particle swarm optimization (PSO), have been used to train adaptive neuro-fuzzy inference system (ANFIS) in order to predict river flow. For this purpose, classic and hybrid ANFIS models were trained using river flow data obtained from upstream stations to predict 1-, 3-, 5-, and 7-day ahead river flow of downstream station. The best inputs were selected using correlation coefficient and a sensitivity analysis test (cosine amplitude). The results showed that PSO improved the performance of classic ANFIS in all the periods such that the averages of coefficient of determination, R2, root mean square error, RMSE (m3/s), mean absolute relative error, MARE, and Nash-Sutcliffe efficiency coefficient (NSE) were improved up to 0.19, 0.30, 43.8, and 0.13%, respectively. Classic ANFIS was only capable to predict river flow in 1-day ahead while EA improved this ability to 5-day ahead. Cosine amplitude method was recognized as an appropriate sensitivity analysis method in order to select the best inputs.  相似文献   
75.
Efficient heat exploitation strategies from geothermal systems demand for accurate and efficient simulation of coupled flow-heat equations on large-scale heterogeneous fractured formations. While the accuracy depends on honouring high-resolution discrete fractures and rock heterogeneities, specially avoiding excessive upscaled quantities, the efficiency can be maintained if scalable model-reduction computational frameworks are developed. Addressing both aspects, this work presents a multiscale formulation for geothermal reservoirs. To this end, the nonlinear time-dependent (transient) multiscale coarse-scale system is obtained, for both pressure and temperature unknowns, based on elliptic locally solved basis functions. These basis functions account for fine-scale heterogeneity and discrete fractures, leading to accurate and efficient simulation strategies. The flow-heat coupling is treated in a sequential implicit loop, where in each stage, the multiscale stage is complemented by an ILU(0) smoother stage to guarantee convergence to any desired accuracy. Numerical results are presented in 2D to systematically analyze the multiscale approximate solutions compared with the fine scale ones for many challenging cases, including the outcrop-based geological fractured field. These results show that the developed multiscale formulation casts a promising framework for the real-field enhanced geothermal formations.  相似文献   
76.
Natural Hazards - Several studies have been conducted on droughts, precipitation, and temperature, whereas none have addressed the underlying relationship between nonlinear dynamic properties and...  相似文献   
77.
Fathipour-Azar  Hadi 《Acta Geotechnica》2022,17(4):1327-1341
Acta Geotechnica - Shear constitutive models of rock discontinuities have been viewed as an effective stability evaluation tool in the rock mass engineering application area. This paper proposes a...  相似文献   
78.
Fathipour-Azar  Hadi 《Acta Geotechnica》2022,17(4):1207-1217
Acta Geotechnica - Particle-based discrete element modeling is commonly used in the numerical analysis of geomaterials. However, for the construction of such models, micromechanical parameters...  相似文献   
79.
The Shalair area, which is located in northeastern Iraq, is considered to be part of the northern Sanandaj-Sirjan Zone (SaSZ) and contains several granitoid bodies. One of these bodies, the Mishao porphyritic-granite (MG), was crystallized at 111.6?±?2.4 Ma, based on its zircon U-Pb age. Its geochemical characteristics suggest that the MG rocks are calc-alkaline, peraluminous, I-type granites with microgranular mafic enclaves. They are enriched in SiO2, Na2O, Al2O3 and Zr and depleted in MgO, Fe2O3, Nb and Ti; in contrast, the enclave sample records lower SiO2 content and higher contents of MgO and Fe2O3. These rocks show an enrichment of LREE relative to HREE, and pronounced negative Eu anomalies implying feldspar fractionation. The isotopic and geochemical characteristics of the MG samples suggest that these rocks are evolved through fractional crystallization. In the La/Nb-Nb diagram and Sm/Nd ratios, the MG rocks and the enclave samples exhibit strong evidence for crustal contamination. The MG rocks record high initial 87Sr/86Sr (0.70625–0.70740) and low 143Nd/144Nd(i) (0.51235–0.51274) ratios. These Sr-Nd isotopic data, combined with the presence of high Th/U and Rb/Sr ratios and significant depletions of Nb, Ta and Ti, show a relation of these bodies to an active continental margin regime. Based on the age and geochemical data of the MG, this study presents new information about the occurrence of Middle Cretaceous magmatic activities, which are related to the active continental margins in the SaSZ that run parallel to the Zagros Fold-Thrust Belt.  相似文献   
80.
The creep property of rock under cyclic loading is very important in civil engineering. In order to establish a novel constitutive equation for rock under cyclic loading, a fractional-order viscoplastic body under cyclic loading was constructed based on fractional-order viscous element. A fractional-order visco-elastoplastic model (FVEPM) for rock was established by connecting constructed fractional-order viscoplastic body with Burgers model. The model was a Burgers model when the maximum value of cyclic loading was less than the critical strength of rock; otherwise, it was a FVEPM which can be used to reflect the transient, steady-state, and tertiary creep phases of rock. The cyclic loading was decomposed into a static load and a cyclic loading with a zero average stress. According to rheological mechanics theory, the rheology constitutive equation of rock under the static load can be derived. According to viscoelastic mechanics theory, the constitutive equation under cyclic loading with a zero average stress was established by introducing the variation parameters of energy storage and energy dissipation compliance caused by rock damage and fracture. Finally, a new dynamic constitutive equation of rock cyclic loading can be obtained by superimposing the constitutive equation under static load and cyclic loading with a zero average stress. Compared with existing test results of rock under cyclic loading, the proposed constitutive model can be used to describe the creep characteristics of rock under cyclic loading and reflect the presented fluctuation of strain curve of rock under cyclic loading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号