首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
大气科学   1篇
地球物理   4篇
地质学   10篇
天文学   2篇
自然地理   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有19条查询结果,搜索用时 609 毫秒
11.
The character and impact of climate change since the last glacial maximum (LGM) in the eastern Mediterranean region remain poorly understood. Here, two new diatom records from the Ioannina basin in northwest Greece are presented alongside a pre-existing record and used to infer past changes in lake level, a proxy for the balance between precipitation and evaporation. Comparison of the three records indicates that lake-level fluctuations were the dominant driver of diatom assemblage composition change, whereas productivity variations had a secondary role. The reconstruction indicates low lake levels during the LGM. Late glacial lake deepening was underway by 15.0 cal kyr BP, implying that the climate was becoming wetter. During the Younger Dryas stadial, a lake-level decline is recorded, indicating arid climatic conditions. Lake Ioannina deepened rapidly in the early Holocene, but long-term lake-level decline commenced around 7.0 cal kyr BP. The pattern of lake-level change is broadly consistent with an existing lake-level reconstruction at Lake Xinias, central Greece. The timing of the apparent change, however, is different, with delayed early Holocene deepening at Xinias. This offset is attributed to uncertainties in the age models, and the position of Xinias in the rain shadow of the Pindus Mountains.  相似文献   
12.
Climate change and high magnitude mass wasting events pose adverse societal effects and hazards, especially in alpine regions. Quantification of such geomorphic processes and their rates is therefore critical but is often hampered by the lack of appropriate techniques and the various spatiotemporal scales involved in these studies. Here we exploit both in situ cosmogenic beryllium-10 (10Be) and carbon-14 (14C) nuclide concentrations for deducing exposure ages and tracing of sediment through small alpine debris flow catchments in central Switzerland. The sediment cascade and modern processes we track from the source areas, through debris flow torrents to their final export out into sink regions with cosmogenic nuclides over an unprecedented five-year time series with seasonal resolution. Data from a seismic survey and a 90 m core revealed a glacially overdeepened basin, filled with glacial and paraglacial sediments. Surface exposure dating of fan boulders and radiocarbon ages constrain the valley fill from the last deglaciation until the Holocene and show that most of the fan existed in early Holocene times already. Current fan processes are controlled by episodic debris flow activity, snow (firn) and rock avalanches. Field investigations, digital elevation models (DEMs) of difference and geomorphic analysis agree with sediment fingerprinting with cosmogenic nuclides, highlighting that the bulk of material exported today at the outlet of the subcatchments derives from the lower fans. Cosmogenic nuclide concentrations steadily decrease from headwater sources to distal fan channels due to the incorporation of material with lower nuclide concentrations. Further downstream the admixture of sediment from catchments with less frequent debris flow activity can dilute the cosmogenic nuclide signals from debris flow dominated catchments but may also reach thresholds where buffering is limited. Consequently, careful assessment of boundary conditions and driving forces is required when apparent denudation rates derived from cosmogenic nuclide analysis are upscaled to larger regions. © 2018 John Wiley & Sons, Ltd.  相似文献   
13.
Detailed 10Be and 14C dating and supporting pollen analysis of Alpine Lateglacial glacial and landslide deposits in the Hohen Tauern Mountains (Austria) constrain a sequence‐based stratigraphy comprising a major landslide (13.0±1.1 ka) overlain by till and termino‐lateral moraines of an advancing (12.6±1.0 ka) and retreating (11.3±0.8 ka) glacier in turn overlain by a minor landslide (10.8±1.1 ka). These results define glacier activity during the Younger Dryas age Egesen stadial bracketed by landslide activities during the Bølling‐Allerød interstadial and the Preboreal. In contrast to recent studies on Holocene glaciation in the Alps, no traces of any Holocene glacier advance bigger than during the Little Ice Age are documented. Furthermore, this study demonstrates the advantages of using an allostratigraphical approach based on unconformity‐bounded sedimentary units as a tool for glacial stratigraphy in formerly glaciated mountain regions, rather than a stratigraphy based on either isolated morphological features or lithostratigraphical characteristics.  相似文献   
14.
We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (<100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.  相似文献   
15.
Terrestrial cosmogenic nuclides (TCN) have widely been used as proxies in determining denudation rates in catchments. Most studies were limited to samples from modern active streams, thus little is known about the magnitude and causes of TCN variability on millennial time scales. In this work we present a 6 kyrs long, high resolution record of 10Be concentrations (n = 18), which were measured in sediment cores from an alluvial fan delta at the outlet of the Fedoz Valley in the Swiss Alps. This record is paired with a 3‐year time series (n = 4) of 10Be measured in sediment from the active stream currently feeding this fan delta. The temporal trend in the 10Be concentrations after correction for postdepositional production of 10Be was found to be overall constant and in good agreement with the modern river 10Be concentration. The calculated mean catchment‐wide denudation rate amounts to 0.73 ± 0.18 mm yr?1. This fairly constant level of 10Be concentrations can be caused by a constant denudation rate over time within the catchment or alternatively by a buffered signal. In this contribution we suggest that the large alluvial floodplain in the Fedoz Valley may act as an efficient buffer on Holocene time scales in which sediments with different 10Be signatures are mixed. Therefore, presumable variations in the 10Be signals derived from changes in denudation under a fluctuating Holocene climate are only poorly transferred to the catchment outlet and not recorded in the 10Be record. However, despite the absence of high frequency signals, we propose that the buffered and averaged 10Be signal could be meaningfully and faithfully interpreted in terms of long‐term catchment‐averaged denudation rate. Our study suggests that alluvial buffers play an important role in regulating the 10Be signal exported by some alpine settings that needs to be taken into account and further investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
16.
To develop a more precise understanding of Alpine glacier fluctuations during the Holocene, the glacier forefields of the Triftjegletscher and the Oberseegletscher east of Zermatt in the Valais Alps, Switzerland, were investigated. A multidisciplinary approach of detailed geological and geomorphological field mapping combined with 10Be exposure and radiocarbon dating was applied. A total of twelve samples of boulders and bedrock were taken from both Little Ice Age (LIA) landforms, as documented by the Dufour map published in 1862, and from landforms outside of the LIA. The resulting 10Be ages range between 12590 ± 350 a and 420 ± 170 a. A piece of wood found embedded in the Little Ice Age moraine gave radiocarbon ages that range between 293 cal years BP up to modern (356–63 cal years before 2013). Based on these results, four tentative steps of the Holocene evolution could be distinguished. An early Holocene stage, which documents the decay of the Egesen stadial glaciers when the first parts of the study area became ice free. This was followed by a phase with no evidence of glacier advance. Then in the late Holocene, the glaciers advanced (at least) twice. An advance around 1200 a, as shown by several moraine ages, coincides with the Göschenen II cold phase. A more extensive readvance occurred during the LIA as shown on the historical maps and underpinned by one 10Be exposure age and the radiocarbon age. This later advance destroyed or overprinted the earlier landforms in most parts of the area.  相似文献   
17.
A field-based reconstruction of the deglacial paleogeography in the Fort McMurray area permits: 1) constraining the timing of meltwater routing to the Arctic from the present Hudson Bay drainage basin; and 2) minimum-age estimates for ice-margin positions that can be used to constrain ice-sheet modeling results. A downslope recession of the Laurentide Ice Sheet resulted in a series of proglacial lakes forming between the ice margin and higher land to the southwest. The paleogeography of these lakes is poorly constrained in part from the masking effect of boreal forest vegetation and map-scale issues. However, recent space-shuttle based DEMs increase the number and spatial extent of moraines identified within the study area resulting in a coherent pattern of ice margin retreat focused on the Athabasca River valley. An intensive lake-coring program resulted in a minimum ten-fold increase in the radiocarbon database used to limit moraine ages. Results indicate that deglaciation in this region was younger than previously reported, and it is likely that the meltwater could not drain northward to the Arctic Ocean from any source southeast of the Fort McMurray area until approximately 9850–9660 14C BP.  相似文献   
18.
On 12 September AD 1717, a rock volume larger than 10 million m3 collapsed onto the Triolet Glacier, mobilized a mass composed of ice and sediment and travelled more than 7 km downvalley in the upper Ferret Valley, Mont Blanc Massif (Italy). This rock avalanche destroyed two small settlements, causing seven casualties and loss of livestock. No detailed maps were made at the time. Later investigators attributed accumulations of granitic boulders and irregular ridges on the upper valley floor to either glacial deposition, or the AD 1717 rock avalanche, or a complex mixture of glacial deposition, earlier rock avalanche and AD 1717 rock avalanche origin. In this study, we present cosmogenic 10Be exposure ages from nine boulders in the extensive chaotic boulder deposit with irregular ridges, two from Holocene glacier‐free areas, and one from a Little Ice Age moraine. Exposure ages between 330 ± 23 and 483 ± 123 a from eight of nine boulders from the chaotic deposit indicate that at least seven were deposited by the AD 1717 rock avalanche. The other three boulders yielded 10Be exposure ages of 10 900 ± 400, 9700 ± 400 and 244 ± 97 a, respectively. Our results are in good agreement with the existing chronology from dendrochronology and lichenometry, and radiocarbon analysis of wood samples, but not with older 14C ages from a peat bog in the upper part of the valley. Based on the new age control, the rock avalanche deposits cover the whole bottom of the upper Ferret valley. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
19.
Long piston cores taken from the subsurface of two mountain lakes of the eastern Swiss Alps recovered sediments, which overlie the Flims rockslide deposits. These sediments provide new information on the chronology of the largest known Alpine rockslide and can be used to reconstruct the post landslide environmental evolution. The oldest 14C date of the lake sediments yields a minimum age of the rockslide at 9660–9430 cal. yr BP. In addition, the dating of a wood fragment contained in the rockslide deposits directly below the lake sediments shows a maximum age of 9480–9120 cal. yr BP. The overlap of the maximum and minimum ages, 9480–9430 cal. yr BP, approximates the age of the Flims rockslide. This early Holocene range coincides with a period of higher frequency of large mass movements observed in the Alps, which could be related to climatic changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号