首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   26篇
  国内免费   2篇
测绘学   5篇
大气科学   6篇
地球物理   134篇
地质学   226篇
海洋学   25篇
天文学   46篇
综合类   4篇
自然地理   7篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   10篇
  2020年   6篇
  2019年   10篇
  2018年   35篇
  2017年   28篇
  2016年   37篇
  2015年   23篇
  2014年   39篇
  2013年   38篇
  2012年   32篇
  2011年   34篇
  2010年   35篇
  2009年   29篇
  2008年   19篇
  2007年   11篇
  2006年   14篇
  2005年   5篇
  2004年   6篇
  2003年   8篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有453条查询结果,搜索用时 31 毫秒
31.
Turkey currently lacks a fully functional flood forecasting system (FFS). However, the studies necessary for establishing such a system are still being performed by the Turkish State Meteorological Service. The main purpose of this study was to determine the technical architecture of the FFS intended to be developed in Turkey and to design a flood forecasting and inundation-mapping system integrated with spatial data infrastructure (SDI). Because SDIs provide interoperability among the institutions by enabling collective use of data and services, this enables decision makers to take correct and rapid decisions regarding the forecasting. In the design of the system, the Web services architecture presented by the open geospatial consortium that develops international standards for SDI realizations was taken as a basis. Designed with flexibility and an expandable architecture, the system will enable instant access to up-to-date data from different institutions through Web services and meets the requirements of a real-time FFS. While the criteria requiring the expansion of the designed system were explained, its implementation was left for future studies.  相似文献   
32.
Istanbul today is probably unique in the world not only in terms of the recognition of its earthquake risk by its inhabitants and administrators, but also in terms of significant steps taken in a such a short time toward the mitigation of its earthquake vulnerabilities. This paper, however, deals with the issues that still remain unattended.  相似文献   
33.
We use the teleparallel geometry analog of the Møller energy-momentum complex to calculate the energy distribution (due to matter plus field including gravity) of a charged black hole solution in heterotic string theory. We find the same energy distribution as obtained by Gad who investigated the same problem by using the Møller energy-momentum complex in general relativity. The total energy depends on the black hole mass M and charge Q. The energy obtained is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in the teleparallel equivalent of general relativity, but also in any teleparallel model. Furthermore, our results also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is a powerful concept of energy and momentum.  相似文献   
34.
Einstein's equations with variable gravitational and cosmological constants are considered in the presence of a perfect fluid for the anizotropic Bianchi I universe in a way which conserving the energy-momentum tensor. Two solutions are found, one of which the cosmological term varies inversely with power law of time. The other of which cosmological term is constant.  相似文献   
35.
Tanyaş  Hakan  Görüm  Tolga  Fadel  Islam  Yıldırım  Cengiz  Lombardo  Luigi 《Landslides》2022,19(6):1405-1420

On November 14, 2016, the northeastern South Island of New Zealand was hit by the magnitude Mw 7.8 Kaikōura earthquake, which is characterized by the most complex rupturing mechanism ever recorded. The widespread landslides triggered by the earthquake make this event a great case study to revisit our current knowledge of earthquake-triggered landslides in terms of factors controlling the spatial distribution of landslides and the rapid assessment of geographic areas affected by widespread landsliding. Although the spatial and size distributions of landslides have already been investigated in the literature, a polygon-based co-seismic landslide inventory with landslide size information is still not available as of June 2021. To address this issue and leverage this large landslide event, we mapped 14,233 landslides over a total area of approximately 14,000 km2. We also identified 101 landslide dams and shared them all via an open-access repository. We examined the spatial distribution of co-seismic landslides in relation to lithologic units and seismic and morphometric characteristics. We analyzed the size statistics of these landslides in a comparative manner, by using the five largest co-seismic landslide inventories ever mapped (i.e., Chi-Chi, Denali, Wenchuan, Haiti, and Gorkha). We compared our inventory with respect to these five ones to answer the question of whether the landslides triggered by the 2016 Kaikōura earthquake are less numerous and/or share size characteristics similar to those of other strong co-seismic landslide events. Our findings show that the spatial distribution of the Kaikōura landslide event is not significantly different from those belonging to other extreme landslide events, but the average landslide size generated by the Kaikōura earthquake is relatively larger compared to some other large earthquakes (i.e., Wenchuan and Gorkha).

  相似文献   
36.

The Genç District is located on the Bingöl Seismic Gap (BSG) of the Eastern Anatolian Fault Zone (EAFZ) with its?~?34.000 residents. The Karl?ova Triple Junction, where the EAFZ, the North Anatolian Fault Zone, and the Varto Fault Zone meet, is only 80 km NE of the Genç District. To make an earthquake disaster damage prediction of the Genç District, carrying a high risk of disaster, we have (1) prepared a new geological map, and (2) conducted a single-station microtremor survey. We defined that three SW-NE trending active faults of the sinistral Genç Fault Zone are cutting through the District. We have obtained dominant period (T) as?<?0.2 s, the amplification factor (A) between 8 and 10, the average shear wave velocity for the first 30 m (Vs30) as?<?300 m/s, and the seismic vulnerability index (Kg) as?>?20, in the central part of the Genç District. We have also prepared damage prediction maps for three bedrock acceleration values (0.25, 0.50, 0.75 g). Our earthquake damage prediction scenarios evidenced that as the bedrock acceleration values increase, the area of soil plastic behavior expands linearly. Here we report that if the average expected peak ground acceleration value (0.55–0.625 g) is exceeded during an earthquake, significant damage would be inevitable for the central part of the Genç District where most of the schools, mosques, public buildings, and hospitals are settled-down.

  相似文献   
37.
38.
39.
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avc?lar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the Ç?narc?k Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the Ç?narc?k Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük çekmece and K ü ç ük çekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avc?lar. Indeed, Avc?lar and ?zmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avc?lar and ?zmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avc?lar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号