首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   762篇
  免费   43篇
  国内免费   16篇
测绘学   41篇
大气科学   49篇
地球物理   194篇
地质学   395篇
海洋学   29篇
天文学   66篇
综合类   4篇
自然地理   43篇
  2023年   3篇
  2022年   21篇
  2021年   35篇
  2020年   34篇
  2019年   32篇
  2018年   73篇
  2017年   75篇
  2016年   99篇
  2015年   42篇
  2014年   68篇
  2013年   75篇
  2012年   55篇
  2011年   56篇
  2010年   32篇
  2009年   29篇
  2008年   13篇
  2007年   9篇
  2006年   8篇
  2005年   6篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1998年   5篇
  1997年   6篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1978年   4篇
  1977年   2篇
  1975年   4篇
  1973年   1篇
排序方式: 共有821条查询结果,搜索用时 4 毫秒
821.

Reservoir simulators model the highly nonlinear partial differential equations that represent flows in heterogeneous porous media. The system is made up of conservation equations for each thermodynamic species, flash equilibrium equations and some constraints. With advances in Field Development Planning (FDP) strategies, clients need to model highly complex Improved Oil Recovery processes such as gas re-injection and CO2 injection, which requires multi-component simulation models. The operating range of these simulation models is usually around the mixture critical point and this can be very difficult to simulate due to phase mislabeling and poor nonlinear convergence. We present a Machine Learning (ML) based approach that significantly accelerates such simulation models. One of the most important physical parameters required in order to simulate complex fluids in the subsurface is the critical temperature (Tcrit). There are advanced iterative methods to compute the critical point such as the algorithm proposed by Heidemann and Khalil (AIChE J 26,769–799, 1980) but, because these methods are too expensive, they are usually replaced by cheaper and less accurate methods such as the Li-correlation (Reid and Sherwood 1966). In this work we use a ML workflow that is based on two interacting fully connected neural networks, one a classifier and the other a regressor, that are used to replace physical algorithms for single phase labelling and improve the convergence of the simulator. We generate real time compositional training data using a linear mixing rule between the injected and the in-situ fluid compositions that can exhibit temporal evolution. In many complicated scenarios, a physical critical temperature does not exist and the iterative sequence fails to converge. We train the classifier to identify, a-priori, if a sequence of iterations will diverge. The regressor is then trained to predict an accurate value of Tcrit. A framework is developed inside the simulator based on TensorFlow that aids real time machine learning applications. The training data is generated within the simulator at the beginning of the simulation run and the ML models are trained on this data while the simulator is running. All the run-times presented in this paper include the time taken to generate the training data and train the models. Applying this ML workflow to real field gas re-injection cases suffering from severe convergence issues has resulted in a 10-fold reduction of the nonlinear iterations in the examples shown in this paper, with the overall run time reduced 2- to 10-fold, thus making complex FDP workflows several times faster. Such models are usually run many times in history matching and optimization workflows, which results in compounded computational savings. The workflow also results in more accurate prediction of the oil in place due to better single phase labelling.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号