首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   7篇
测绘学   4篇
大气科学   28篇
地球物理   34篇
地质学   37篇
海洋学   10篇
天文学   19篇
自然地理   8篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   14篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1974年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
111.
Land borders connecting Canada and the United States are vital transportation facilities for the two countries. Truck crossing times at these facilities can have a significant impact on the performance of the economy. To date, knowledge about border crossing times has been limited due to lack of detailed data on the Canadian border. This article explores and models the patterns of crossing times at the three major land crossings connecting Canada to the United States: Ambassador Bridge, Blue Water Bridge, and Peace Bridge. The analysis is based on 387,775 border crossing truck trips that were generated between Canada and the United States over a course of twelve months. Seemingly unrelated regression (SUR) models are estimated to evaluate the seasonal and hourly crossing times of Canada- and U.S.-bound trips on each border crossing, controlling for traffic intensity in the models. The SUR modeling approach is chosen to control for potential cross-model correlations. The results suggest that crossing times at the border vary by season and hour of the day. Crossing times also vary by direction of traffic and by type of day (i.e., weekday vs. weekend). Traffic intensity has a significant influence on crossing times at two of the crossings but not the Blue Water Bridge. Finally, crossing times are more variable during the summer season and tend to be higher during the late evening hours and past midnight.  相似文献   
112.
113.
In recent decades, German geomorphology has been mainly concerned with climatic and climato-genetic geomorphology. The first is the study of processes, especially of process combinations in different climato-morphological zones. The second is concerned with the way exogenic forces control the evolution of relief in a certain region. This study of relief generations differs fundamentally from denudation chronology. Certain principles developed as knowledge of these fields has grown, such as the variability of rock resistance with climate and discontinuity of processes in both space and time, are considered. In recent years new trends, based mainly on climatic geomorphology, have been towards greater specialization in fields such as quantitative geomorphology, geomorphological mapping, and laboratory analysis of regolith and soil samples.  相似文献   
114.
115.
An approximate sky view factor (SVF) has been developed, which is capable of estimating the mean rate of net longwave radiant energy loss from urban street canyons. Reduced scale models of typical canyon geometries were used in outdoor tests to verify the predictions of radiant fluxes obtained using the proposed SVF. Air-surface temperature differences from the scale models are used together with hypothesized within-canyon airflow patterns to determine some quantitative characteristics of the wind field in canyons. Simple correlations are proposed for the relationship between mean in-canyon and pedestrian-level flow speeds on the one hand, and the ambient (above roof-level) wind speed on the other hand. As expected, the height/width ratio of a canyon controls the form and magnitude of the flow within.  相似文献   
116.
117.
118.
A set of high‐fidelity simulated asteroid materials, or simulants, was developed based on the mineralogy of carbonaceous chondrite meteorites. Three varieties of simulant were developed based on CI1 chondrites (typified by Orgueil), CM2 chondrites (typified by Murchison), and CR2/3 chondrites (multiple samples). The simulants were designed to replicate the mineralogy and physical properties of the corresponding meteorites and anticipated asteroid surface materials as closely as is reasonably possible for bulk amounts. The simulants can be made in different physical forms ranging from larger cobbles to fine‐grained regolith. We analyzed simulant prototypes using scanning electron microscopy, X‐ray fluorescence, reflectance spectroscopy at ambient conditions and in vacuum, thermal emission spectroscopy in a simulated asteroid environment chamber, and combined thermogravimetry and evolved gas analysis. Most measured properties compare favorably to the reference meteorites and therefore to predicted volatile‐rich asteroid surface materials, including boulders, cobbles, and fine‐grained soils. However, there were also discrepancies, and mistakes were made in the original mineral formulations that will be updated in the future. The asteroid simulants are available to the community from the nonprofit Exolith Lab at UCF, and the mineral recipes are freely published for other groups to reproduce and modify as they see fit.  相似文献   
119.
120.
We combine thermal simulations of ground ice stability near small rocks with extrapolations of the abundance of rocks at the Phoenix landing site based on HiRISE rock counts to estimate the degree of ice table depth variability within the 3.8 m2 workspace that can be excavated during the mission. Detailed predictions of this kind are important both to test current ground-ice theory and to optimize soil investigations after landing. We find that Phoenix will very likely have access to at least one rock in the diameter range 5 cm to 1 m. Our simulations, which assume the ice to be in diffusive equilibrium with atmospheric water vapor, indicate that all rocks in this size range are associated with an annulus of deep ice-free soil. Ice table depth variability of 1-5 cm is very likely at the landing site due to the presence of small rocks. Further, there are scenarios in which Phoenix might exploit the presence of individual large rocks and/or the arrangement of small rocks to sample soils at depths >10 cm below the average depth predicted from orbit (∼4 cm). Scale analysis to constrain uncertainties in simulation results indicates that estimates of maximum depths may be somewhat conservative and that ice table depressions associated with individual rocks could be deeper and laterally more extended than indicated by formal predictions by mm to cm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号