首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   17篇
测绘学   2篇
大气科学   30篇
地球物理   61篇
地质学   75篇
海洋学   16篇
天文学   27篇
自然地理   9篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   13篇
  2016年   6篇
  2015年   8篇
  2014年   5篇
  2013年   10篇
  2012年   5篇
  2011年   16篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   5篇
  2006年   9篇
  2005年   9篇
  2004年   7篇
  2003年   7篇
  2002年   8篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   5篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1973年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1959年   1篇
  1951年   1篇
  1945年   1篇
  1937年   1篇
  1930年   1篇
  1927年   2篇
  1920年   2篇
  1918年   1篇
  1915年   2篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
141.
About 75 % of the Antarctic surface mass gain occurs over areas below 2,000 m asl, which cover 40 % of the grounded ice-sheet. As the topography is complex in many of these regions, surface mass balance modelling is highly dependent on horizontal resolution, and studying the impact of Antarctica on the future rise in sea level requires physical approaches. We have developed a computationally efficient, physical downscaling model for high-resolution (15 km) long-term surface mass balance (SMB) projections. Here, we present results of this model, called SMHiL (surface mass balance high-resolution downscaling), which was forced with the LMDZ4 atmospheric general circulation model to assess Antarctic SMB variability in the twenty first and the twenty second centuries under two different scenarios. The higher resolution of SMHiL better reproduces the geographical patterns of SMB and increase significantly the averaged SMB over the grounded ice-sheet for the end of the twentieth century. A comparison with more than 3200 quality-controlled field data shows that LMDZ4 and SMHiL reproduce the observed values equally well. Nevertheless, field data below 2,000 m asl are too scarce to efficiently show the added value of SMHiL and measuring the SMB in these undocumented areas should be a future scientific priority. Our results suggest that running LMDZ4 at a finer resolution (15 km) may give a future increase in SMB in Antarctica that is about 30 % higher than by using its standard resolution (60 km) due to the higher increase in precipitation in coastal areas at 15 km. However, a part (~15 %) of these discrepancies could be an artefact from SMHiL since it neglects the foehn effect and likely overestimates the precipitation increase. Future changes in the Antarctic SMB at low elevations will result from the competition between higher snow accumulation and runoff. For this reason, developing downscaling models is crucial to represent processes in sufficient detail and correctly model the SMB in coastal areas.  相似文献   
142.
143.
The element Fe and Fe-bearing minerals occur ubiquitously throughout the field of astrobiology. Cycling between the various oxidation states of Fe provides a source of energy available for life. Banded iron formations may record the rise of oxygenic photosynthesis. The distribution of Fe between Fe-bearing minerals and its oxidation states can help to characterize and understand ancient environments with respect to the suitability for life by constraining the primary rock type and the redox conditions under which it crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering. Fe Mössbauer spectroscopy is a powerful tool to investigate Fe-bearing compounds. It can identify Fe-bearing minerals, determine Fe oxidation states with high accuracy, quantify the distribution of Fe between mineralogical phases, and provide clues about crystallinity and particle sizes. Two miniaturized Mössbauer spectrometers are on board of the NASA Mars Exploration Rovers Spirit and Opportunity. The Fe-bearing minerals goethite, an iron oxide-hydroxide, and jarosite, an iron hydroxide sulfate, were identified by Mössbauer spectroscopy in Gusev Crater and at Meridiani Planum, respectively, providing in situ proof of an aqueous history of the two landing sites and constraints on their habitability. Hematite identified by Mössbauer spectroscopy at both landing sites adds further evidence for an aqueous history. On Earth, Mössbauer spectroscopy was used to monitor possibly microbially-induced changes of Fe-oxidation states in basaltic glass samples exposed at the Loihi Seamount, a deep sea hydrothermal vent system, which might be analogous to possible extraterrestrial habitats on ancient Mars or the Jovian moon Europa today.  相似文献   
144.
The objective of the R&D project CLAIRE was to prove the principle of a gamma-ray lens for nuclear astrophysics. CLAIRE's Laue diffraction lens has a diameter of 45 cm and a focal length of 277 cm; 556 germanium-silicon crystals are tuned to focus 170 keV photons onto a 1.5 cm diameter focal spot. Laboratory measurements of the individual crystals and the entire lens have been used to validate a numerical model that we use to estimate the lens performance for a source at infinity. During a stratospheric balloon flight on 2001 June 14, CLAIRE was directed at the Crab nebula by a pointing system able to stabilize the lens to within a few arcseconds of the target. In 72 min of valid pointing time, 33 photons from the Crab were detected in the 3 keV bandpass of the lens: CLAIRE's first light! The performance of CLAIRE's gamma-ray lens, namely the peak reflectivity for a polychromatic source (9±1%), has been confirmed by ground data obtained on a 205 meter long test range. CLAIRE's measured performance validates the principle of a Laue lens for nuclear astrophysics, opening the way for a space-borne gamma-ray lens telescope that will achieve one to two orders of magnitude improvement in sensitivity over present technologies.  相似文献   
145.
We present recent observations of the plasma parameters in coronal holes at the origin of the fast solar wind and in the interplanetary medium. A model based on the heat conductivity law in a dilute plasma shows the coherency of the electron and proton temperature observations from coronal holes to the interplanetary medium. These new observations are severe constraints for any model of the expansion of the fast solar wind. We discuss why and how non-equilibrium multispecies Fokker-Planck approach must be developed and present a generalized Grad's solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
146.
ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test General Relativity with an improvement in sensitivity of over 3 orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals.For this mission, accurate pulse timing with an ultra-stable clock, and a drag-free spacecraft with reliable inertial sensor are required. T2L2 has demonstrated the required accurate pulse timing; rubidium clock on board Galileo has mostly demonstrated the required clock stability; the accelerometer on board GOCE has paved the way for achieving the reliable inertial sensor; the demonstration of LISA Pathfinder will provide an excellent platform for the implementation of the ASTROD I drag-free spacecraft. These European activities comprise the pillars for building up the mission and make the technologies needed ready. A second mission, ASTROD or ASTROD-GW (depending on the results of ASTROD I), is envisaged as a three-spacecraft mission which, in the case of ASTROD, would test General Relativity to one part per billion, enable detection of solar g-modes, measure the solar Lense-Thirring effect to 10 parts per million, and probe gravitational waves at frequencies below the LISA bandwidth, or in the case of ASTROD-GW, would be dedicated to probe gravitational waves at frequencies below the LISA bandwidth to 100?nHz and to detect solar g-mode oscillations. In the third phase (Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD bandwidth. This paper on ASTROD I is based on our 2010 proposal submitted for the ESA call for class-M mission proposals, and is a sequel and an update to our previous paper (Appouchaux et al., Exp Astron 23:491?C527, 2009; designated as Paper I) which was based on our last proposal submitted for the 2007 ESA call. In this paper, we present our orbit selection with one Venus swing-by together with orbit simulation. In Paper I, our orbit choice is with two Venus swing-bys. The present choice takes shorter time (about 250?days) to reach the opposite side of the Sun. We also present a preliminary design of the optical bench, and elaborate on the solar physics goals with the radiation monitor payload. We discuss telescope size, trade-offs of drag-free sensitivities, thermal issues and present an outlook.  相似文献   
147.
In this chapter, we will give a brief overview on our current theoretical understanding how planets form from the solid material in circumstellar disks in the core accretion-gas capture model. This chapter will not be as concise and complete as a review on this matter, yet will serve as an introductory text to generate interest in the subject. Students are referred to comprehensive text books and some important reviews.This chapter will discuss “dusty storms”, e.g. the dust transport in turbulent protoplanetary disks, followed by the latest model of planetesimal formation, e.g. gravoturbulent planetesimal formation, which deals with particle concentration in turbulence and N-body simulations thereof. We also briefly describe the core accretion-gas capture process and talk about nascent planets, e.g. the observability of planet–disk interaction concluding with the migration of young planets and the final arrangement of planetary systems.  相似文献   
148.
The GLACIOCLIM-SAMBA (GS) Antarctic accumulation monitoring network, which extends from the coast of Adelie Land to the Antarctic plateau, has been surveyed annually since 2004. The network includes a 156-km stake-line from the coast inland, along which accumulation shows high spatial and interannual variability with a mean value of 362?mm water equivalent a?1. In this paper, this accumulation is compared with older accumulation reports from between 1971 and 1991. The mean and annual standard deviation and the km-scale spatial pattern of accumulation were seen to be very similar in the older and more recent data. The data did not reveal any significant accumulation trend over the last 40?years. The ECMWF analysis-based forecasts (ERA-40 and ERA-Interim), a stretched-grid global general circulation model (LMDZ4) and three regional circulation models (PMM5, MAR and RACMO2), all with high resolution over Antarctica (27–125?km), were tested against the GS reports. They qualitatively reproduced the meso-scale spatial pattern of the annual-mean accumulation except MAR. MAR significantly underestimated mean accumulation, while LMDZ4 and RACMO2 overestimated it. ERA-40 and the regional models that use ERA-40 as lateral boundary condition qualitatively reproduced the chronology of interannual variability but underestimated the magnitude of interannual variations. Two widely used climatologies for Antarctic accumulation agreed well with the mean GS data. The model-based climatology was also able to reproduce the observed spatial pattern. These data thus provide new stringent constraints on models and other large-scale evaluations of the Antarctic accumulation.  相似文献   
149.
A modified ceilometer has been used during the second Intensive Observation Period (IOP) of the “Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transport d'Émission” (ESCOMPTE) to perform continuous remote observations of aerosol accumulations in the first 3 km of the atmosphere. These observations encompassed an episode of intense particulate and photochemical pollution. The submicronic particles density, measured at an altitude of 600 m, went from a very low point of a few tens of particles per cubic centimeter (at the end of a Mistral episode in the free atmosphere) to a high point of more than 4500 particles per cubic centimeter (when pollutants were trapped by thermal inversions).The main result is that this instrument enables a fine documentation of the mixing layer height and of aerosol particles stratifications and circulation. Airborne aerosol measurements have been made above the mountainous region of Mérindol in order to validate in situ the remote sensing measurements. Ozone measurements near the summit of the mountains as well as in the valley were performed in order to correlate aerosol accumulation and ozone concentration. As a notable example, the two-layer aerosol stratification seen in the first 2 days of IOP 2b in that part of the ESCOMPTE domain confirms the results of another team which used backtrajectories. The low-altitude pollution for this timeframe had a local origin (the Fos industrial area), whereas above 500 m, the air masses had undergone regional-scale transport (from north-eastern Spain).The second major result is the highlighting of a pattern, in sea breeze conditions and in this part of the ESCOMPTE experiment zone, of nocturnal aerosol accumulation at an altitude of between 500 and 2000 m, followed by high ozone concentration the next day.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号