首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35199篇
  免费   1196篇
  国内免费   458篇
测绘学   893篇
大气科学   2964篇
地球物理   8336篇
地质学   12902篇
海洋学   2571篇
天文学   6841篇
综合类   308篇
自然地理   2038篇
  2021年   244篇
  2020年   263篇
  2019年   257篇
  2018年   1067篇
  2017年   953篇
  2016年   1021篇
  2015年   722篇
  2014年   935篇
  2013年   1595篇
  2012年   1499篇
  2011年   1600篇
  2010年   1217篇
  2009年   1581篇
  2008年   1348篇
  2007年   1302篇
  2006年   1220篇
  2005年   1708篇
  2004年   1741篇
  2003年   1480篇
  2002年   975篇
  2001年   835篇
  2000年   751篇
  1999年   661篇
  1998年   672篇
  1997年   638篇
  1996年   528篇
  1995年   477篇
  1994年   440篇
  1993年   377篇
  1992年   342篇
  1991年   320篇
  1990年   355篇
  1989年   327篇
  1988年   262篇
  1987年   355篇
  1986年   289篇
  1985年   384篇
  1984年   426篇
  1983年   427篇
  1982年   375篇
  1981年   348篇
  1980年   352篇
  1979年   321篇
  1978年   352篇
  1977年   295篇
  1976年   296篇
  1975年   315篇
  1974年   266篇
  1973年   273篇
  1972年   179篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The existence of a large subglacial lake beneath the antarctic Ice Sheet at Terre Adélie indicates the presence of basal ice at its pressure-melting temperature. A numerical model of the ice-sheet thermal regime is employed using the balance velocity of the ice sheet as an initial model input in order to calculate ice-sheet basal temperatures. However, the results from this model show the Terre Adélie area to be characterised by basal freezing. Heat in addition to that accounted for in the model is thus required at the ice-sheet base in order for pressure melting temperatures to be attained. The sources for such heat are (1) an enhanced geothermal heat flux and (2) an increase in frictional heating caused by the flow of ice. In this paper the latter possibility is expanded by hypothesising that subglacial topography induces convergent ice flow around Terre Adélie, causing enhanced basal ice velocities. Model experiments indicate that an increase in ice velocity (from 7 to at least 42 m yr−1) is required to raise the temperature of the basal ice to the pressure melting value. Increased ice velocity, and consequent frictional heat production due to convergent ice flow, may therefore be important in explaining the location of the subglacial lake in this region. These results allow the process of convergent ice flow within a contemporary ice sheet to be quantified. A verification (or otherwise) of the model results may be possible if ice surface velocity measurements from modem GPS methods are made.  相似文献   
982.
An analysis of the Zihuatanejo, Mexico, earthquake of 1994 December 10 ( M = 6.6), based on teleseismic and near-source data, shows that it was a normal-faulting, intermediate-depth ( H = 50 ± 5 km) event. It was located about 30 km inland, within the subducted Cocos plate. The preferred fault plane has an azimuth of 130°, a dip of 79° and a rake of −86°. The rupture consisted of two subevents which were separated in time by about 2 s, with the second subevent occurring downdip of the first. The measured stress drop was relatively high, requiring a Δσ of about a kilobar to explain the high-frequency level of the near-source spectra. A rough estimate of the thickness of the seismogenic part of the oceanic lithosphere below Zihuatanejo, based on the depth and the rupture extent of this event, is 40 km.
This event and the Oaxaca earthquake of 1931 January 15 ( M = 7.8) are the two significant normal-faulting, intermediate-depth shocks whose epicentres are closest to the coast. Both of these earthquakes were preceded by several large to great shallow, low-angle thrust earthquakes, occurring updip. The observations in other subduction zones show just the opposite: normal-faulting events precede, not succeed, updip, thrust shocks. Indeed, the thrust events, soon after their occurrence, are expected to cause compression in the slab, thus inhibiting the occurrence of normal-faulting events. To explain the occurrence of the Zihuatanejo earthquake, we note that the Cocos plate, after an initial shallow-angle subduction, unbends and becomes subhorizontal. In the region of the unbending, the bottom of the slab is in horizontal extension. We speculate that the large updip seismic slip during shallow, low-angle thrust events increases the buckling of the slab, resulting in an incremental tensional stress at the bottom of the slab and causing normal-faulting earthquakes. This explanation may also hold for the 1931 Oaxaca event.  相似文献   
983.
We propose a two-step inversion of three-component seismograms that (1) recovers the far-field source time function at each station and (2) estimates the distribution of co-seismic slip on the fault plane for small earthquakes (magnitude 3 to 4). The empirical Green's function (EGF) method consists of finding a small earthquake located near the one we wish to study and then performing a deconvolution to remove the path, site, and instrumental effects from the main-event signal.
The deconvolution between the two earthquakes is an unstable procedure: we have therefore developed a simulated annealing technique to recover a stable and positive source time function (STF) in the time domain at each station with an estimation of uncertainties. Given a good azimuthal coverage, we can obtain information on the directivity effect as well as on the rupture process. We propose an inversion method by simulated annealing using the STF to recover the distribution of slip on the fault plane with a constant rupture-velocity model. This method permits estimation of physical quantities on the fault plane, as well as possible identification of the real fault plane.
We apply this two-step procedure for an event of magnitude 3 recorded in the Gulf of Corinth in August 1991. A nearby event of magnitude 2 provides us with empirical Green's functions for each station. We estimate an active fault area of 0.02 to 0.15 km2 and deduce a stress-drop value of 1 to 30 bar and an average slip of 0.1 to 1.6 cm. The selected fault of the main event is in good agreement with the existence of a detachment surface inferred from the tectonics of this half-graben.  相似文献   
984.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   
985.
986.
987.
988.
The buried Chicxulub impact structure is marked by a dramatic ring of sinkholes (called cenotes if containing water), and adjacent less prominent partial rings, which have been shown to coincide with maxima in horizontal gravity gradients and a topographic depression. These observations, along with the discreteness and spacing of the features, suggest a formation mechanism involving faulting in the outer slump zone of the crater, which would thus have a diameter of approximately 180 km.
An opposing view, based primarily on the interpretation of gravity data, is that (he crater is much larger than the cenote ring implies. Given the association of the known cenote ring with faults, we here examine northern Yucatan for similar rings in gravity, surface features and elevation, which we might expect to be associated with outer concentric faults in the case of a larger, possibly multiring, structure.
No such outer rings have been found, although definite patterns are seen in the distribution of karst features outside the crater rim. We explain these patterns as resulting mainly from deformation related to the block fault zone that parallels tbe shelf edge of eastern Yucatan.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号