首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1903篇
  免费   126篇
  国内免费   85篇
测绘学   97篇
大气科学   104篇
地球物理   508篇
地质学   995篇
海洋学   90篇
天文学   159篇
综合类   29篇
自然地理   132篇
  2024年   4篇
  2023年   13篇
  2022年   60篇
  2021年   65篇
  2020年   73篇
  2019年   86篇
  2018年   170篇
  2017年   142篇
  2016年   195篇
  2015年   91篇
  2014年   196篇
  2013年   195篇
  2012年   106篇
  2011年   114篇
  2010年   71篇
  2009年   82篇
  2008年   66篇
  2007年   42篇
  2006年   60篇
  2005年   36篇
  2004年   26篇
  2003年   30篇
  2002年   23篇
  2001年   21篇
  2000年   17篇
  1999年   8篇
  1998年   15篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   8篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1978年   3篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有2114条查询结果,搜索用时 140 毫秒
991.
Soil erosion is the most important factor in land degradation and influences desertification in semi-arid areas. A comprehensive methodology that integrates revised universal soil loss equation (RUSLE) model and GIS was adopted to determine the soil erosion risk (SER) in semi-arid Aseer region, Saudi Arabia. Geoenvironmental factors viz. rainfall (R), soil erodibility (K), slope (LS), cover management and practice factors were computed to determine their effects on average annual soil loss. The high potential soil erosion, resulting from high denuded slope, devoid of vegetation cover and high intensity rainfall, is located towards the north western part of the study area. The analysis is investigated that the SER over the vegetation cover including dense vegetation, sparse vegetation and bushes increases with the higher altitude and higher slope angle. The erosion maps generated with RUSLE integrated with GIS can serve as effective inputs in deriving strategies for land planning/management in the environmentally sensitive mountainous areas.  相似文献   
992.
Pharmaceutical compounds, widely produced and used all around the world, are partly responsible for the widespread water pollution in the environment. Carbamazepine (CBZ) is an antiepileptic drug that persists in the environment for many years. In the present study, we used the TiO2/UV, nanoparticulate zero‐valent iron (NZVI), and NZVI/H2O2 treatment processes to compare efficiency of CBZ removal from water. Influence of NZVI loading, H2O2 concentration, TiO2 loading, UV lamp power, and the matrix (distilled water and groundwater) on CBZ removal efficiency was evaluated using full factorial design. Results indicated that the NZVI/H2O2 process oxidized CBZ within 5 min. On the other hand, the NZVI process alone did not reduce CBZ concentration after 120 min of process time. The NZVI/H2O2 process was equally effective in CBZ removal from both distilled water and groundwater whereas the TiO2/UV process was less effective due to the presence of ions in groundwater. CBZ removal efficiency of the TiO2/UV process declined 30% when the matrix was changed from distilled water to groundwater. Negative divalent ions, i.e., and , were the main cause of reduction of CBZ removal efficiency from groundwater. It is likely that these two ions adsorb onto, and consequently prevent the superoxide anion and hydroxyl radical OH? from being generated on, the surface of the TiO2.  相似文献   
993.
The extensive use of pesticides for increasing the agricultural production is affecting the quality of groundwater. The objectives of this article are to (i) develop pesticide relative leaching ranks for well sites, (ii) develop maps for human health risks due to pesticide applications, and (iii) identify the most significant parameters in pesticide simulations for groundwater vulnerability assessment. The methods include (i) development of acifluorfen relative leaching ranks for 25 well sites using ArcPRZM‐3, (ii) development of health risk maps using model simulated maximum dissolved bentazon concentrations on the basis of USA drinking water quality guidelines, (iii) sensitivity analysis for 14 ArcPRZM‐3 input parameters using the Plackett–Burman method. ArcPRZM‐3 is a user‐friendly system for spatial modeling of pesticide leaching from surface to groundwater. Thirteen acifluorfen relative leaching potential ranks were developed in which the pesticide leaching decrease from 1 to 13. The model predicted ranks for well 34 and well 9 were 2nd and 3rd, respectively, and acifluorfen was detected in both wells during the physical monitoring. The percentages of high health risks in the agricultural areas were 48.38 and 72.72% for Randolph and Independence Counties, respectively. The most significant parameters were thickness of horizon compartment, runoff curve number of antecedent moisture condition II for cropping, soil bulk density, and total application of pesticide. The irrigation, soil permeability, and numerical dispersion could impact the pesticide leaching in soils toward groundwater. The ArcPRZM‐3 system could be efficiently applied for spatial modeling and mapping of pesticide concentrations for groundwater vulnerability assessment on a large scale.  相似文献   
994.
Abstract

Stable isotopes are powerful research tools in environmental sciences and their use in ecosystem research is increasing. Stable isotope measurements allow the study of evapotranspiration fluxes, soil evaporation and leaf transpiration phenomena. Soil water and leaf water are the sources of the evapotranspiration that transfers large quantities of water from land to the atmosphere; as a result the isotopic composition of water left in the leaves is modified towards enrichment. Evaporation also changes the isotopic composition of water bodies creating a natural isotopic signal. The isotopic identity of soil water affects the oxygen isotopic signature of leaf and stem water. In this paper we present the isotopic data of bulk leaf water, showing the enrichment in isotopic value of oxygen due to evapotranspiration from leaves in conjunction with the isotopic signal of rainwater and other environmental factors such as humidity and temperature. Results suggest that the variation in the values of δ18O of Eucalyptus citriodora, Dalbergia sissoo, Melia azedarach and Pinus roxburghii is due to the seasonal changes in the δ18O of the source water for plants, i. e. rain. It is further observed that leaf water δ18O values are depleted during the months of July, August and September. This occurs due to the following reasons: (a) the sampling areas receive about 50% of the average annual rain during these months, and (b) rainfalls during these months are isotopically depleted compared with winter rains.

Citation Butt, S., Ali, M., Fazil, M. & Latif, Z. (2010) Seasonal variations in the isotopic composition of leaf and stem water from an arid region of Southeast Asia. Hydrol. Sci. J. 55(5), 844–848.  相似文献   
995.
ABSTRACT

The modelling of soil loss and investigation of urban hydrology and wet weather pollution in Malaysia requires the definition of rainfall parameters for the region. In this study, an inexpensive method was applied to establish the influence of raindrop diameter on kinetics and rain intensity in Skudai, Peninsular Malaysia, as a prelude to wider regional research. Raindrop sizes vary from less than 1.2 mm to as big as 7.0 mm, with median raindrop diameters of 2.51 mm and a mean diameter of 2.56 mm. The median raindrop diameter–intensity relationship correlates strongly using power and exponential equations, with coefficients of determination of 0.75 and 0.73, respectively. The kinetic energy–intensity relationship fits an exponential function and also a linear equation with R2 values of 0.49 and 0.34, respectively. An average rain kinetic energy of 30 J m-2 mm-1 was recorded. This research leads to an objective reclassification of rainfall intensities in the region.
Editor Z.W. Kundzewicz; Associate editor not assigned  相似文献   
996.
997.
Spatial data infrastructure (SDI) is a complex system for which huge investments are being made worldwide. These large-scale investments in the development of SDIs incontrovertibly require reliable design and planning that guarantee a successful outcome. One approach to deal with such an expectation is to model the development process of the SDI system over time. If the model can be translated into the computer-based environment to be used as a virtual world, then the real situation can also be simulated. Such a simulation will enable the SDI coordinators/managers to gain knowledge about the behavior of the system under different decisions and situations and eventually help them to better develop the SDI through the informed decision making. However, a limited number of tools and techniques are currently available in the SDI modeling history in terms of the modeling and simulation of such a complex system. The system dynamics technique based on systems theory is a method for modeling and managing the feedback systems that are complex, dynamic and nonlinear over time. This article addresses the applicability of the system dynamics technique for modeling and simulating the development process of SDIs. It is argued that the system dynamics technique is capable of modeling the interactions among the factors affecting the SDI, the feedback loops and the delays. It is also highlighted that an SDI model based on the system dynamics technique enables the SDI coordinators/managers to simulate the effect of different factors or decisions on various aspects of SDI and evaluate alternative decisions and/or policies prior to making any commitment.  相似文献   
998.
Radionuclides which present in different beach sands are sources of external exposure that contribute to the total radiation exposure of human. 226Ra, 235U, 232Th, 40K and 137Cs analysis has been carried out in sand samples collected at six depth levels, from eight locations of the northern coast of Iran, Ramsar, using high-resolution gamma-ray spectroscopy. The average Specific activities of natural radionuclides viz., 226Ra, 235U, 232Th, 40K and 137Cs, in the 0–36 cm depth sand were found as: 19.2 ± 0.04, 2.67 ± 0.17, 17.9 ± 0.06, 337.5 ± 0.61 and 3.35 ± 0.12 Bq kg−1, respectively. The effects of organic matter content and pH value of sand samples on the natural radionuclide levels were also investigated. Finally, the measured radionuclide concentrations in the Ramsar beach were compared with the world average values, as reported by UNSCEAR (2000). None of the studied beaches were considered as a radiological risk.  相似文献   
999.
The anti-microbial agent triclosan (TCS), and its derivative methyl-triclosan (Me-TCS), are discharged with treated effluents from wastewater treatment plants to receiving environments. We investigated the bioconcentration of TCS and Me-TCS in mussels (Mytilus galloprovincialis) exposed to TCS (100 ng L−1) for 30 days in seawater aquaria (19 ± 2 °C) with fresh phytoplankton as a food source. Bioconcentration increased with time reaching a steady-state around 24–30 days. The bioconcentration factor (log BCF) for TCS were 2.81 L kg−1 (dry weight) and 4.13 L kg−1, when lipid normalised concentrations were used. Mussels were also deployed in cages at four marine locations receiving effluents from WWTPs. The mean (±SD) TCS and Me-TCS concentrations for mussels from these sites were 9.87 (±1.34) and 6.99 (±2.44) μg kg−1. The study showed that mussels can be a useful tool for monitoring pollution of TCS and Me-TCS in marine and estuarine environments.  相似文献   
1000.
Abstract

Seasonality is an important hydrological signature for catchment comparison. Here, the relevance of monthly precipitation–runoff polygons (defined as scatter points of 12 monthly average precipitation–runoff value pairs connected in the chronological monthly sequence) for characterizing seasonality patterns was investigated to describe the hydrological behaviour of 10 catchments spanning a climatic gradient across the northern temperate region. Specifically, the research objectives were to: (a) discuss the extent to which monthly precipitation–runoff polygons can be used to infer active hydrological processes in contrasting catchments; (b) test the ability of quantitative metrics describing the shape, orientation and surface area of monthly precipitation–runoff polygons to discriminate between different seasonality patterns; and (c) examine the value of precipitation–runoff polygons as a basis for catchment grouping and comparison. This study showed that some polygon metrics were as effective as monthly average runoff coefficients for illustrating differences between the 10 catchments. The use of precipitation–runoff polygons was especially helpful to look at the dynamics prevailing in specific months and better assess the coupling between precipitation and runoff and their relative degree of seasonality. This polygon methodology, linked with a range of quantitative metrics, could therefore provide a new simple tool for understanding and comparing seasonality among catchments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Ali, G., Tetzlaff, D., Kruitbos, L., Soulsby, C., Carey, S., McDonnell, J., Buttle, J., Laudon, H., Seibert, J., McGuire, K., and Shanley, J., 2013. Analysis of hydrological seasonality across northern catchments using monthly precipitation–runoff polygon metrics. Hydrological Sciences Journal, 59 (1), 56–72.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号