首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   0篇
测绘学   2篇
大气科学   18篇
地球物理   58篇
地质学   160篇
海洋学   11篇
天文学   37篇
综合类   2篇
自然地理   10篇
  2016年   7篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   4篇
  2011年   11篇
  2010年   11篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   15篇
  2004年   10篇
  2003年   8篇
  2002年   12篇
  2001年   5篇
  2000年   11篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1974年   6篇
  1973年   6篇
  1972年   5篇
  1969年   3篇
  1967年   5篇
  1966年   4篇
  1965年   2篇
  1964年   4篇
  1963年   3篇
  1962年   2篇
  1961年   2篇
  1960年   5篇
  1959年   2篇
  1956年   3篇
  1940年   3篇
排序方式: 共有298条查询结果,搜索用时 562 毫秒
201.
A small scale and temporally limited CO2 injection test was performed in a shallow aquifer to investigate the geochemical impact of CO2 upon such aquifers and to apply and verify different monitoring methods. Detailed site investigation coupled with multiphase simulations were necessary to design the injection experiment and to set up the monitoring network, before CO2 was injected over a ten-day period at three injection wells, at a depth of 18?m below surface level into a quaternary sand aquifer located close to the town of Wittstock in Northeast Germany. Monitoring methods comprised groundwater sampling and standard analyses, as well as trace element analyses and isotope analyses; geoelectrical borehole monitoring; passive samplers to analyse temporally integrated for cations and multi-parameter probes that can measure continuously for dissolved CO2, pH and electrical conductivity. Due to CO2 injection, total inorganic carbon concentrations increased and pH decreased down to a level of 5.1. Associated reactions comprised the release of major cations and trace elements. Geoelectrical monitoring, as well as isotope analyses and multi-parameter probes proved to be suitable methods for monitoring injected CO2 and/or the alteration of groundwater.  相似文献   
202.
The landscape of Antarctica, hidden beneath kilometre-thick ice in most places, has been shaped by the interactions between tectonic and erosional processes. The flow dynamics of the thick ice cover deepened pre-formed topographic depressions by glacial erosion, but also preserved the subglacial landscapes in regions with moderate to slow ice flow. Mapping the spatial variability of these structures provides the basis for reconstruction of the evolution of subglacial morphology. This study focuses on the Jutulstraumen Glacier drainage system in Dronning Maud Land, East Antarctica. The Jutulstraumen Glacier reaches the ocean via the Jutulstraumen Graben, which is the only significant passage for draining the East Antarctic Ice Sheet through the western part of the Dronning Maud Land mountain chain. We acquired new bed topography data during an airborne radar campaign in the region upstream of the Jutulstraumen Graben to characterise the source area of the glacier. The new data show a deep relief to be generally under-represented in available bed topography compilations. Our analysis of the bed topography, valley characteristics and bed roughness leads to the conclusion that much more of the alpine landscape that would have formed prior to the Antarctic Ice Sheet is preserved than previously anticipated. We identify an active and deeply eroded U-shaped valley network next to largely preserved passive fluvial and glacial modified landscapes. Based on the landscape classification, we reconstruct the temporal sequence by which ice flow modified the topography since the beginning of the glaciation of Antarctica.  相似文献   
203.
204.
The reaction kinetics and fluid expulsion during the decarbonation reaction of calcite+quartz=wollastonite+CO2 in water-absent conditions were experimentally investigated using a Paterson-type gas apparatus. Starting materials consisted of synthetic calcite/quartz rock powders with variable fractions of quartz (10, 20, and 30 wt%) and grain sizes of 10 µm (calcite) and 10 and 30 µm (quartz). Prior to reaction, samples were HIPed at 700 °C and 300 MPa confining pressure and varying pore pressures. Initial porosity was low at 2.7–6.3%, depending on pore pressure during HIP and the amount and grain size of quartz particles. Samples were annealed at reaction temperatures of 900 and 950 °C at 150 and 300 MPa confining pressures, well within the wollastonite stability field. Run durations were between 10 min and 20 h. SEM micrographs of quenched samples show growth of wollastonite rims on quartz grains and CO2-filled pores between rims and calcite grains and along calcite grain boundaries. Measured widths of wollastonite rims vs. time indicate a parabolic growth law. The reaction is diffusion-controlled and reaction progress and CO2 production are continuous. Porosity increases rapidly at initial stages of the reaction and attains about 10–12% after a few hours. Permeability at high reaction temperatures is below the detection limit of 10–21 m2 and not affected by increased porosity. This makes persistent pore connectivity improbable, in agreement with observed fluid inclusion trails in form of unconnected pores in SEM micrographs. Release of CO2 from the sample was measured in a downstream reservoir. The most striking observation is that fluid release is not continuous but occurs episodic and in pulses. Ongoing continuous reaction produces increase in pore pressure, which is, once having attained a critical value (Pcrit), spontaneously released. Connectivity of the pore space is short-lived and transient. The resulting cycle includes pore pressure build-up, formation of a local crack network, pore pressure release and crack closure. Using existing models for plastic stretching and decrepitation of pores along with critical stress intensity factors for the calcite matrix and measured pore widths, it results that Pcrit is about 20 MPa. Patterns of fluid flow based on mineralogical and stable isotope evidence are commonly predicted using the simplifying assumption of a continuous and constant porosity and permeability during decarbonation of the rock. However, simple flow models, which assume constant pore pressure, constant fluid filled porosity, and constant permeability may not commonly apply. Properties are often transient and it is most likely that fluid flow in a specific reacting rock volume is a short-lived episodic process.Editorial responsibility: J. Hoefs  相似文献   
205.
Since most Alfvén-waves in the solar wind are observed to come from the Sun, nonlinear wave-particle interactions can be expected to constitute their dominant dissipation process. The growth or damping of two circularly-polarized Alfvén-waves with wave vectors parallel to the ambient magnetic field is calculated using kinetic theory. If the waves are oppositely polarized they both damp proportional to their frequency. If the waves are of the same polarization, both the lower frequency wave and the plasma particles gain energy at the expense of the higher frequency wave. Thus, with increasing distance from the Sun, a steepening of the power spectrum is expected. For waves propagating in the same direction, the interaction is negligible for small , while it becomes appreciable for 10–1. For conditions typical of the solar wind near 1 AU an observed half-hour linearly-polarized wave, for example, with B=0(B 0) has a damping time of about 10 h.  相似文献   
206.
207.
The 31.6±0.3 Ma old Bufa del Diente alkali-syenite (NE Mexico) intruded a sequence of Cretaceous limestones with intercalated sub-horizontal chert layers. The cherts acted as aquifers that facilitated transport of brines and pegmatitic melts within the shallow-level (<1 kbar) contact-metamorphic aureole. Fluid-driven reactions between chert and marble wallrock, and the influx of late melts and various fluids gave rise to distinct chemical and isotopic signatures within the aquifer and across the zones of infiltration and fluid-driven reaction. Aqueous brines of magmatic origin produced thick wollastonite mantles around the chert layers. Wollastonite formation occurred at the expense of limestone and chert and generated CO2. This CO2-induced fluid unmixing into an aqueous brine and a low-density CO2-rich fluid, which was lost to the overlying marble where it oxidized organic matter and caused 13C and 18O shifts in a zone some 5–10 cm wide. After wollastonite formation, the chert aquifers were locally intruded by pegmatite veins carrying alkali feldspar, quartz, aegirine-augite, eudialyte, zircon, and apatite. Aqueous fluids that exsolved during crystallization of the pegmatite veins escaped along late cross-fractures and migrated along the inner and outer borders of the wollastonite margins. Chemical dispersion patterns of U, Al, Na + K, P, S, Fe, and REE across the chert-to-marble boundary and its metasomatic rims are shown by autoradiography and neutron-induced radiography. Scavenging of cations at mineralogical contacts and cation transport into the marbles occurred only on the mm to cm scale. Isotopic data for Pb and Sr across a simple metachert-marble boundary and for Pb, Sr, Nd, B, and Li across a metachert-pegmatite-marble sequence demonstrate the following: (1) The Pb and Sr isotopic signature of early fluids was buffered by the carbonate wallrock. Only late fluids, shielded from wallrock interaction by a wollastonite mantle, variably preserved a memory of their initial magmatic signature. (2) Since the Nd isotope signature of marble and chert is bound to calcite and clay minerals, systematic shifts to unradiogenic Nd in marble reflect loss of carbonate-bound Nd as the wollastonite margin is approached. Nd in the wollastonite margin is dominated by Nd originally bound to clay minerals. The later emplacement of the pegmatite, which carried the Nd isotope signature of its alkali-syenite source, had little effect on the Nd isotopic composition of the wollastonite rim. (3) Although the Li and B isotopic compositions reflect the alkali-syenite source, they are also affected by isotopic fractionation and partitioning between melt, fluid, and solids.Editorial responsibility J. Hoefs  相似文献   
208.
Abstract We present Kr and Xe isotope data obtained by closed system stepped etching of ilmenite separates from two lunar samples exposed to the solar corpuscular radiation at different epochs. Helium, neon, and argon in the same samples were reported to consist of two components: isotopically unfractionated solar wind (SW) released in the first steps, and an isotopically heavier component (SEP) released later and, thus, sited at larger depth. The same release characteristic is now observed for the heavy noble gases. We also conclude that solar Kr and Xe consist of two isotopically different components, implanted with different energies. The SW-Kr in a recently irradiated soil has a composition very close to atmospheric Kr, which agrees with other newly reported data from stepped etch- and combustion runs. No clear evidence for temporally variable SW-Kr or SW-Xe spectra was found. “Surface correlated” Kr and Xe components “SUCOR” and “BEOC 12001” are a mixture of SW and SEP. The isotopic fractionation factors relating SW and SEP are close to the square of the mass ratios for all five noble gases. We infer that the measured Kr/Xe ratio in ilmenite is essentially identical to this ratio in the solar corpuscular radiation.  相似文献   
209.
The spatial dependence of the pitch-angle and associated spatial diffusion coefficients for cosmic ray particles in interplanetary space is calculated in the WKB approximation. The model considers only Alfven waves of solar origin to be responsible for scattering of moderate energy particles. After developing the general theory results are presented for the asymptotic case corresponding to radial distancesr greater than about 1 to 2 AU. The radial diffusion coefficient r increases with energyE like r E , wherev2/3. The radial mean free path turns out to increase proportional tor 3 at medium and low heliographic latitudes. This behaviour is consistent with a very small radial cosmic ray gradient and the existence of a free boundary for particle diffusion. At equal radial distances the high latitude mean free path is not only much smaller than the one calculated at the lower latitudes but in addition increases only weakly with distance. Some conceivable dynamical implications for the outer solar system are indicated.  相似文献   
210.
Laser-ablation microanalysis of a large suite of silicate and sulfide melt inclusions from the deeply eroded, Cu-Au-mineralizing Farallón Negro Volcanic Complex (NW Argentina) shows that most phenocrysts in a given rock sample were not formed in equilibrium with each other. Phenocrysts in the andesitic volcano were brought together in dominantly andesitic—dacitic extrusive and intrusive rocks by intense magma mixing. This hybridization process is not apparent from macroscopic mingling textures, but is clearly recorded by systematically contrasting melt inclusions in different minerals from a given sample. Amphibole (and rare pyroxene) phenocrysts consistently contain inclusions of a mafic melt from which they crystallized before and during magma mixing. Most plagioclase and quartz phenocrysts contain melt inclusions of more felsic composition than the host rock. The endmember components of this mixing process are a rhyodacite magma with a likely crustal component, and a very mafic mantle-derived magma similar in composition to lamprophyre dykes emplaced early in the evolution of the complex. The resulting magmas are dominantly andesitic, in sharp contrast to the prominently bimodal distribution of mafic and felsic melts recorded by the inclusions. These results severely limit the use of mineral assemblages to derive information on the conditions of magma formation. Observed mineral associations are primarily the result of the mixing of partially crystallized magmas. The most mafic melt is trapped only in amphibole, suggesting pressures exceeding 350 MPa, temperatures of around 1,000 °C and water contents in excess on 6 wt%. Upon mixing, amphibole crystallized with plagioclase from andesitic magma in the source region of porphyry intrusions at 250 MPa, 950 °C and water contents of 5.5 wt%. During ascent of the extrusive magmas, pyroxene and plagioclase crystallized together, as a result of magma degassing at low pressures (150 MPa). Protracted extrusive activity built a large stratovolcano over the total lifetime of the magmatic complex (>3 m.y.). The mixing process probably triggered eruptions as a result of volatile exsolution.Electronic Supplementary Material Supplementary material (eTable 1and eFigure 1) is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: T.L. Grove  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号