首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   12篇
  国内免费   2篇
测绘学   5篇
大气科学   16篇
地球物理   63篇
地质学   50篇
海洋学   27篇
天文学   8篇
综合类   1篇
自然地理   22篇
  2023年   1篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   1篇
  2016年   6篇
  2015年   11篇
  2014年   7篇
  2013年   11篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   11篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有192条查询结果,搜索用时 0 毫秒
191.
A method to reduce the spin-up time of ocean models   总被引:2,自引:2,他引:0  
The spin-up timescale in large-scale ocean models, i.e., the time it takes to reach an equilibrium state, is determined by the slow processes in the deep ocean and is usually in the order of a few thousand years. As these equilibrium states are taken as initial states for many calculations, much computer time is spent in the spin-up phase of ocean model computations. In this note, we propose a new approach which can lead to a very large reduction in spin-up time for quite a broad class of existing ocean models. Our approach is based on so-called Jacobian–Free Newton–Krylov methods which combine Newton’s method for solving non-linear systems with Krylov subspace methods for solving large systems of linear equations. As there is no need to construct the Jacobian matrices explicitly the method can in principle be applied to existing explicit time-stepping codes. To illustrate the method we apply it to a 3D planetary geostrophic ocean model with prognostic equations only for temperature and salinity. We compare the new method to the ‘ordinary’ spin-up run for several model resolutions and find a considerable reduction of spin-up time.  相似文献   
192.
In this paper a contribution is made to the ongoing debate on which brown shrimp generation mostly sustains the autumn peak in coastal North Sea commercial fisheries: the generation born in summer, or the winter one. Since the two perspectives are based on different considerations on the growth timeframe from settlement till commercial size, the Dynamic Energy Budget (DEB) theory was applied to predict maximum possible growth under natural conditions. First, the parameters of the standard DEB model for Crangon crangon L. were estimated using available data sets. These were insufficient to allow a direct estimation, requiring a special protocol to achieve consistency between parameters. Next, the DEB model was validated by comparing simulations with published experimental data on shrimp growth in relation to water temperatures. Finally, the DEB model was applied to simulate growth under optimal food conditions using the prevailing water temperature conditions in the Wadden Sea. Results show clear differences between males and females whereby the fastest growth rates were observed in females. DEB model simulations of maximum growth in the Wadden Sea suggest that it is not the summer brood from the current year as Boddeke claimed, nor the previous winter generation as Kuipers and Dapper suggested, but more likely the summer generation from the previous year which contributes to the bulk of the fisheries recruits in autumn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号