首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   15篇
  国内免费   2篇
测绘学   5篇
大气科学   9篇
地球物理   63篇
地质学   84篇
海洋学   55篇
天文学   12篇
综合类   2篇
自然地理   20篇
  2024年   1篇
  2022年   4篇
  2021年   9篇
  2020年   7篇
  2019年   4篇
  2018年   7篇
  2017年   11篇
  2016年   7篇
  2015年   10篇
  2014年   8篇
  2013年   10篇
  2012年   9篇
  2011年   17篇
  2010年   11篇
  2009年   7篇
  2008年   12篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   10篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有250条查询结果,搜索用时 62 毫秒
91.
A large volume of middle Miocene basaltic rocks is widely distributed across the back-arc region of Northeast Japan, including around the Dewa Mountains. Petrological research has shown that basaltic rocks of the Aosawa Formation around the Dewa Mountains were generated as a result of the opening of the Sea of Japan. To determine the precise ages of the middle Miocene basaltic magmatism, we conducted U–Pb and fission-track (FT) dating of a rhyolite lava that constitutes the uppermost part of the Aosawa Formation. In addition, we estimated the paleostress field of the volcanism using data from a basaltic dike swarm in the same formation. The rhyolite lava yields a U–Pb age of 10.73 ±0.22 Ma (2σ) and a FT age of 10.6 ±1.6 Ma (2σ), and the paleostress analysis suggests a normal-faulting stress regime with a NW–SE-trending σ3-axis, a relatively high stress ratio, and a relatively high magma pressure. Our results show that the late Aosawa magmatism occurred under NW–SE extensional stress and ended at ~ 11 Ma.  相似文献   
92.
Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.  相似文献   
93.
Here, the year 2011 characteristics of evapotranspiration and the energy budget of a black spruce forest underlain by permafrost in interior Alaska were explored. Energy balance was nearly closed during summer, and the mean value of the daily energy balance ratio (the ratio of turbulent energy fluxes to available energy) from June to August was 1.00, though a large energy balance deficit was observed in the spring. Such a deficit was explained partly by the energy consumed by snowmelt. Ground heat flux played an important role in the energy balance, explaining 26.5% of net radiation during summer. The mean daily evapotranspiration of this forest during summer was 1.37 mm day?1 – considered typical for boreal forests. The annual evapotranspiration and sublimation yielded 207.3 mm year?1, a value much smaller than the annual precipitation. Sublimation accounted for 8.8% (18.2 mm year?1) of the annual evapotranspiration and sublimation; thus, the sublimation is not negligible in the annual water balance in boreal forests. The daytime average decoupling coefficient was very small, and the mean value was 0.05 during summer. Thus, evapotranspiration from this forest was mostly explained by the component from the dryness of the air, resulting from the aerodynamically rough surface of this forest.  相似文献   
94.
Based on experimental and numerical investigations, the present paper focuses on under ground scope (UGS) chemical grouting method that can actually improve the pipeline surrounding foundation to solve pipeline saggy damage. According to the experimental results, a solution-type injection material could make lager soil deformation, using less total slurry amount than suspension-type injection material. Therefore, a suspension-type injection material with shorter gel time is more suitable for the UGS method, making it more effective to reinforce the pipeline foundation and restore pipelines. The results of some patterns of injection tests revealed relationship between the behavior of the grouting material and the deformation of the soil. It is found that the material can be injected into a foundation by fracture grouting if the permeation coefficient is lower than 1.00 × 10−3 mm/s. The situation was analyzed by using 2-D finite element method analysis software Phase2, and the analysis result proposes that the real data and simulation data are nearly the same in impermeable soil. Furthermore, even if the construction object is permeable soil, it can also be become impermeable soil by two phases grouting: soil improvement grouting and restoration grouting.  相似文献   
95.
Plutonic rocks in the southern Abukuma Mountains include gabbro and diorite, fine‐grained diorite, hornblende–biotite granodiorite (Ishikawa, Samegawa, main part of Miyamoto and Tabito, Kamikimita and Irishiken Plutons), biotite granodiorite (the main part of Hanawa Pluton and the Torisone Pluton), medium‐ to coarse‐grained biotite granodiorite and leucogranite, based on the lithologies and geological relations. Zircon U–Pb ages of gabbroic rocks are 112.4 ±1.0 Ma (hornblende gabbro, Miyamoto Pluton), 109.0 ±1.1 Ma (hornblende gabbro, the Hanawa Pluton), 102.7 ±0.8 Ma (gabbronorite, Tabito Pluton) and 101.0 ±0.6 Ma (fine‐grained diorite). As for the hornblende–biotite granodiorite, zircon U–Pb ages are 104.2 ±0.7 Ma (Ishikawa Pluton), 112.6 ±1.0 Ma (Tabito Pluton), 105.2 ±0.8 Ma (Kamikimita Pluton) and 105.3±0.8 Ma (Irishiken Pluton). Also for the medium‐ to fine‐grained biotite granodiorite, zircon U–Pb ages are 106.5±0.9 Ma (Miyamoto Pluton), 105.1 ±1.0 Ma (Hanawa Pluton) and the medium‐ to coarse‐grained biotite granodiorite has zircon U–Pb age of 104.5 ±0.8 Ma. In the case of the leucogranite, U–Pb age of zircon is 100.6 ±0.9 Ma. These data indicate that the intrusion ages of gabbroic rocks and surrounding granitic rocks ranges from 113 to 101 Ma. Furthermore, K–Ar ages of biotite and or hornblende in the same rock samples were dated. Accordingly, it is clear that these rocks cooled down rapidly to 300 °C (Ar blocking temperature of biotite for K–Ar system) after their intrusion. These chronological data suggest that the Abukuma plutonic rocks in the southern Abukuma Mountains region uplifted rapidly around 107 to 100 Ma after their intrusion.  相似文献   
96.
In this study, based on a 2-D thermomechanical finite element model, the uplift of the Transantarctic Mountains (TAM) is discussed in relation to the flexural uplift of a rheologically layered lithosphere, which is described by Vening-Meinesz's cantilever kinematics. The general model behaviour shows that the thickness of the crust and the geothermal gradient in the lithosphere are the principal factors in controlling the effective elastic thickness ( T e). Although T e is also significantly dependent on the magnitude of the uplift and the wet or dry rheological condition of rocks, these two factors do not have a dominant influence on the half-wavelength of the TAM. The model with a plausible crustal structure beneath Antarctica shows that the thermal structure beneath East Antarctica is the critical factor, controlling the half-wavelength of the TAM. If there is a significant radiogenic heat source in the Antarctic lithosphere, T e beneath East Antarctica is estimated to be 50 km, at most, and the lithosphere has no potential to explain an exceptionally large-scale half-wavelength of the TAM. Even for the model without a heat source, if East Antarctica is significantly thermally influenced by West Antarctica, T e is estimated to be about 60 km, and it is difficult to reproduce the half-wavelength of the TAM. Contrarily, when a radiogenic heat source is absent and the thermal structure beneath East Antarctica is not significantly affected by that beneath West Antarctica, the rheological structure beneath East Antarctica has the potential to reproduce the half-wavelength of the TAM ( T e∼ 100 km). Thus, the presence of a radiogenic heat source in the crust and mantle and the thermal influence of West Antarctica on East Antarctica are crucial factors in the reproduction of the half-wavelength found in the TAM.  相似文献   
97.
In the western United States, more than 79 000 km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land–atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) – RSM, RegCM3, MM5-CLM3, and DRCM – to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (− 1.4 to − 3.1 °C) and maximum (− 2.9 to − 6.1 °C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest.  相似文献   
98.
Methods are proposed to estimate the monthly relative humidity and wet bulb temperature based on observations from a dynamical downscaling coupled general circulation model with a regional climate model (RCM) for a quantitative assessment of climate change impacts. The water vapor pressure estimation model developed was a regression model with a monthly saturated water vapor pressure that used minimum air temperature as a variable. The monthly minimum air temperature correction model for RCM bias was developed by stepwise multiple regression analysis using the difference in monthly minimum air temperatures between observations and RCM output as a dependent variable and geographic factors as independent variables. The wet bulb temperature was estimated using the estimated water vapor pressure, air temperature, and atmospheric pressure at ground level both corrected for RCM bias. Root mean square errors of the data decreased considerably in August.  相似文献   
99.
To understand the generation and evolution of mafic magmas from Klyuchevskoy volcano in the Kamchatka arc, which is one of the most active arc volcanoes on Earth, a petrological and geochemical study was carried out on time-series samples from the volcano. The eruptive products show significant variations in their whole-rock compositions (52.0–55.5 wt.% SiO2), and they have been divided into high-Mg basalts and high-Al andesites. In the high-Mg basalts, lower-K and higher-K primitive samples (>9 wt.% MgO) are present, and their petrological features indicate that they may represent primary or near-primary magmas. Slab-derived fluids that induced generation of the lower-K basaltic magmas were less enriched in melt component than those associated with the higher-K basaltic magmas, and the fluids are likely to have been released from the subducting slab at shallower levels for the lower-K basaltic magmas than for higher-K basaltic magmas. Analyses using multicomponent thermodynamics indicates that the lower-K primary magma was generated by ~13% melting of a source mantle with ~0.7 wt.% H2O at 1245–1260?°C and ~1.9 GPa. During most of the evolution of the volcano, the lower-K basaltic magmas were dominant; the higher-K primitive magma first appeared in AD 1932. In AD 1937–1938, both the lower-K and higher-K primitive magmas erupted, which implies that the two types of primary magmas were present simultaneously and independently beneath the volcano. The higher-K basaltic magmas evolved progressively into high-Al andesite magmas in a magma chamber in the middle crust from AD 1932 to ~AD 1960. Since then, relatively primitive magma has been injected continuously into the magma chamber, which has resulted in the systematic increase of the MgO contents of erupted materials with ages from ~AD 1960 to present.  相似文献   
100.
A method has been developed for determination of15N isotope ratio in nitrate nitrogen, which is a major analytical step in tracer experiments for studies of nitrate metabolism in the marine environment. The method is based on diazotization of nitrite with sulfanilic acid following reduction of nitrate to nitrite by a cadmium-copper column. The diazonium compound is then subject to the azo coupling reaction with 2-naphthol, and the azo dye formed is extracted by a solid phase extraction column. The dye eluted from the column is collected, and total nitrogen and15N content of the dye are determined by mass spectrometry. Sulfanilic acid can also remove preexisting nitrite by heating the sample under acidic conditions before passing through the cadmium-copper reduction column. The average recovery of nitrate nitrogen was 86%. A procedure for reducing the background nitrogen that derives from the analytical operations has been developed; background nitrogen was limited to about 0.25 μg-atomN. The variation in the background nitrogen levels reflects the range of error in15N determination of nitrate nitrogen by this method. Application of the present method to a15NO3 isotope dilution experiment for determination of nitrification rate in sea water is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号