首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   3篇
  国内免费   5篇
测绘学   3篇
大气科学   1篇
地球物理   47篇
地质学   19篇
海洋学   12篇
天文学   1篇
综合类   6篇
自然地理   19篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   11篇
  1999年   5篇
  1998年   2篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1978年   3篇
  1976年   5篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
排序方式: 共有108条查询结果,搜索用时 146 毫秒
61.
A new method for shipboard calibration of an infrared absorption carbon dioxide analyser was devised, utilizing the oxidative decomposition reaction of oxalic acid by permanganate in acid solution. With the present method, shipboard analysis of total carbon dioxide in 2 ml of sea water can be carried out with an error of less than 0.5 %. Some improvements in the analyser system are also presented.  相似文献   
62.
Abstract The Ryoke Belt in the Ikoma Mountains, Nara Prefecture, Japan, is composed mainly of various granitic, intermediate and gabbroic rocks. Igneous activity in this area is divided into two periods, early–middle Jurassic and late Cretaceous, based on isotopic dating. The intermediate plutonic rocks in the Fukihata area are composed of two rock types: Kyuanji quartz diorite and Fukihata tonalite. Rb–Sr whole-rock isochron ages have been determined for both plutonic rocks. Their ages and initial 87Sr/86Sr ratios are as follows: the Kyuanji quartz diorite has an age of 161.0 ± 17.9 Ma with an initial 87Sr/86Sr ratio of 0.70727 ± 0.00007, while the Fukihata tonalite has an age of 121.4 ± 24.6 Ma with an initial 87Sr/86Sr ratio of 0.70753 ± 0.00020. Our chronological results indicate that the Kyuanji quartz diorite belongs to the Jurassic mafic rocks, such as the Ikoma gabbroic mass, while the Fukihata tonalite belongs to the early Cretaceous granitic rocks. Both these intermediate plutonic rocks have different chemical characteristics and were derived from different magmas.  相似文献   
63.
Abstract Granitoids are widely distributed in the Ryoke belt and have been divided into four main igneous stages based on their field setting. In this paper, we present Rb–Sr isochron ages for the younger Ryoke granitoids (second stage to fourth stage) in the Kinki district. The Yagyu granite (second stage) gave a Rb–Sr whole‐rock isochron age of 74.6 ± 10.9 Ma with an initial 87Sr/86Sr ratio of 0.70938 ± 0.00016, and a Rb–Sr mineral isochron age of 71.8 ± 0.1 Ma. The Narukawa granite (second stage) yielded a Rb–Sr mineral isochron age of 79.5 ± 0.4 Ma. A Rb–Sr whole‐rock isochron age of 78.3 ± 3.0 Ma with an initial 87Sr/86Sr ratio of 0.70764 ± 0.00014 was obtained for the Takijiri adamellite (third stage). The Katsuragi quartzdiorite (fourth stage) gave a Rb–Sr whole‐rock isochron age of 85.1 ± 18.3 Ma (initial 87Sr/86Sr ratio of 0.70728 ± 0.00006), and mineral isochron ages of 76.9 ± 0.5 Ma and 74.8 ± 0.5 Ma. The Minamikawachi granite (fourth stage) gave a Rb–Sr whole‐rock isochron age of 72.8 ± 2.0 Ma with an initial 87Sr/86Sr ratio of 0.70891 ± 0.00021. These age data indicate that the igneous activity in younger Ryoke granitoids of Kinki district occurred between 80 and 70 Ma, except for the Katsuragi quartz diorite. The isotopic data on the various igneous stages in Kinki district correspond with the relative timing from field observations. Based on the initial 87Sr/86Sr ratios, the granitoids of the Ryoke belt in Kinki district are spatially divided into two groups. One is granitoids with initial 87Sr/86Sr ratio of 0.707–0.708, distributed in the southern part of the Ryoke belt. The other is granitoids with initial 87Sr/86Sr ratio of 0.708–0.710 distributed in the northern part of the Ryoke belt. The initial 87Sr/86Sr ratios of granitoids increase with decreasing (becoming younger) Rb–Sr whole‐rock isochron ages.  相似文献   
64.
Abstract Whole‐rock chemical and Sr and Nd isotope data are presented for gabbroic and dioritic rocks from a Cretaceous‐Paleogene granitic terrain in Southwest Japan. Age data indicate that they were emplaced in the late Cretaceous during the early stages of a voluminous intermediate‐felsic magmatic episode in Southwest Japan. Although these gabbroic and dioritic rocks have similar major and trace element chemistry, they show regional variations in terms of initial Sr and Nd isotope ratios. Samples from the South Zone have high initial 87Sr/86Sr (0.7063–0.7076) and low initial Nd isotope ratios (?Nd, ?2.5 to ?5.3); whereas those from the North Zone have lower initial 87Sr/86Sr (usually less than 0.7060) and higher Nd isotope ratios (?Nd, ?0.8 to + 3.3). Regional variations in Sr and Nd isotope ratios are similar to those observed in granitic rocks, although gabbroic and dioritic rocks tend to have slightly lower Sr and higher Nd isotope ratios than granitic rocks in the respective zones. Limited variations in Sr and Nd isotope ratios among samples from individual zones may be attributed partly to a combination of upper crustal contamination and heterogeneity of the magma source. Contamination of magmas by upper crustal material cannot, however, explain the observed Sr and Nd isotope variations between samples from the North and South Zones. Between‐zone variations would reflect geochemical difference in magma sources. The gabbroic and dioritic rocks are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), showing similar normal‐type mid‐ocean ridge basalt (N‐MORB) normalized patterns to arc magmas. Geochronological and isotopic data may suggest that some gabbroic and dioritic rocks are genetically related to high magnesian andesite. Alternatively, mantle‐derived mafic or intermediate rocks which were underplated beneath the crust may be also plausible sources for gabbroic and dioritic rocks. The magma sources (the mantle wedge and lower crust) were isotopically more enriched beneath the South Zone than the North Zone during the Cretaceous‐Paleogene. Sr and Nd isotope ratios of the lower crustal source of the granitic rocks was isotopically affected by mantle‐derived magmas, resulting in similar initial Sr and Nd isotope ratios for gabbroic, dioritic and granitic rocks in each zone.  相似文献   
65.
66.
Earthquake early warning: Concepts,methods and physical grounds   总被引:2,自引:0,他引:2  
Modern technology allows real-time seismic monitoring facilities to evolve into earthquake early warning (EEW) systems, capable of reducing deaths, injuries, and economic losses, as well as of speeding up rescue response and damage recovery. The objective of an EEW system is to estimate in a fast and reliable way the earthquake’s damage potential, before the strong shaking hits a given target.  相似文献   
67.
68.
69.
Erratum     
  相似文献   
70.
Abstract A water injection experiment was carried out by the scientific drilling program named the 'Nojima Fault Zone Probe' during the two periods 9–13 February and 16–25 March 1997. The pumping pressure at the surface was approximately 4 MPa. The total amount of injected water was 258 m3. The injection was made between depths of 1480 m and 1670 m in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m borehole drilled into the Nojima Fault zone. A seismic observation network was deployed to monitor seismic activity related to the water injections. Seismicity suddenly increased in the region not far from the injection hole 4 or 5 days after the beginning of each water injection. These earthquakes were likely to be induced by the water injections. Most of the earthquakes had magnitudes ranging from −2 to +1. Numerous earthquakes occurred during the first injection, but only one could be reliably located and it was approximately 2 km north of the injection site. Between the two injection periods, earthquakes concentrated in the region approximately 1 km northwest of the injection site. During and after the second injection experiment, earthquakes were located approximately 1.5 km west of the injection site. Those earthquakes were located approximately 3 km or 4 km from the injection point and between 2 km and 4 km in depth. Values of intrinsic permeability of 10−14–10−15 m2 were estimated from the time lapse of the induced seismic activity. The coefficient of friction in the area where the induced earthquakes occurred was estimated to be less than 0.3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号