首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   5篇
  国内免费   3篇
测绘学   1篇
大气科学   10篇
地球物理   69篇
地质学   76篇
海洋学   59篇
天文学   29篇
综合类   1篇
自然地理   15篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   8篇
  2016年   8篇
  2015年   1篇
  2014年   8篇
  2013年   10篇
  2012年   13篇
  2011年   10篇
  2010年   13篇
  2009年   21篇
  2008年   13篇
  2007年   16篇
  2006年   13篇
  2005年   6篇
  2004年   7篇
  2003年   8篇
  2002年   9篇
  2001年   10篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   8篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有260条查询结果,搜索用时 15 毫秒
171.
172.
The Nansei Islands in the southern Japanese Archipelago have 15 taxa of seagrasses from seven genera within three families. Seagrasses in this region grow on coral sands or coral debris in shallow reefs and on sandy or muddy substrata in the shallow areas of bays and inlets. Certain Halophila species grow in deep water off some islands. Enhalus acoroides only reaches to Ishigaki I. with winter sea water temperature (WST) at 23 °C, while Okinawa I. (WST at 21.6 °C) is the northern biogeographic limit for Halophila decipiens, H. okinawensis, H. major and H. gaudichaudii. Amami‐oshima I. (WST at 20.7 °C) is the northern border for Thalassia hemprichii, H. minor, H. ovalis, Cymodocea serrulata, Cymodocea rotundata, Syringodium isoetifolium, Halodule uninervis and Halodule pinifolia. Halophila mikii the sole seagrass collected from Yakushima I. (WST at 19.3 °C), is of volcanic origin. The distribution of tropical seagrasses in the Nansei Islands is clearly associated with the warm Kuroshio Current, WST and habitat availability. Zostera japonica is the only temperate species occurring in the region. Meadows of Z. japonica, H. ovalis and Halodule pinifolia have disappeared from certain localities in the Archipelago, due probably to human activities and natural siltation.  相似文献   
173.
We examine the structure of turbulent airflow over ocean waves. Based on an analysis of wind and wave observations derived from a moored and floating Air–Sea Interaction Spar buoy during the Shoaling Waves Experiment field campaign, we show that the cospectra of momentum flux for wind–sea conditions follow established universal scaling laws. Under swell-dominant conditions, the wave boundary layer is extended and the universal cospectral scaling breaks down, as demonstrated previously. On the other hand, the use of peak wave frequency to reproduce the universal cospectra successfully explains the structure of the turbulent flow field. We quantify the wave-coherent component of the airflow and this clarifies how ocean waves affect momentum transfer through the wave boundary layer. In fact, the estimated wave-induced stresses for swell-dominant conditions explain the anomalous cospectral shapes observed near the peak wave frequency.  相似文献   
174.
Eighteen basalts and some volcanic gases from the submarine and subaerial parts of Kilauea volcano were analyzed for the concentration and isotope ratios of sulfur. By means of a newly developed technique, sulfide and sulfate sulfur in the basalts were separately but simultaneously determined. The submarine basalt has 700 ± 100 ppm total sulfur with δ34SΣs of 0.7 ± 0.1 ‰. The sulfate/sulfide molar ratio ranges from 0.15 to 0.56 and the fractionation factor between sulfate and sulfide is +7.5 ± 1.5‰. On the other hand, the concentration and δ34SΣs values of the total sulfur in the subaerial basalt are reduced to 150 ± 50 ppm and ?0.8 ± 0.2‰, respectively. The sulfate to sulfide ratio and the fractionation factor between them are also smaller, 0.01 to 0.25 and +3.0‰, respectively. Chemical and isotopic evidence strongly suggests that sulfate and sulfide in the submarine basalt are in chemical and isotopic equilibria with each other at magmatic conditions. Their relative abundance and the isotope fractionation factors may be used to estimate the ?o2 and temperature of these basalts at the time of their extrusion onto the sea floor. The observed change in sulfur chemistry and isotopic ratios from the submarine to subaerial basalts can be interpreted as degassing of the SO2 from basalt thereby depleting sulfate and 34S in basalt.The volcanic sulfur gases, predominantly SO2, from the 1971 and 1974 fissures in Kilauea Crater have δ34S values of 0.8 to 0.9%., slightly heavier than the total sulfur in the submarine basalts and definitely heavier than the subaerial basalts, in accord with the above model. However, the δ34S value of sulfur gases (largely SO2) from Sulfur Bank is 8.0%., implying a secondary origin of the sulfur. The δ34S values of native sulfur deposits at various sites of Kilauea and Mauna Loa volcanos, sulfate ions of four deep wells and hydrogen sulfide from a geothermal well along the east rift zone are also reported. The high δ34S values (+5 to +6%.o) found for the hydrogen sulfide might be an indication of hot basaltseawater reaction beneath the east rift zone.  相似文献   
175.
18O/16O ratios have been obtained for 134 whole-rocks and minerals from metamorphic and granitic rocks of the Yanai district in the Ryoke belt, Southwest Japan. The 18O/16O ratios of pelitic rocks of the marginal metamorphic zone decrease progressively with increasing metamorphic grade. In the gneiss-granite complex (zone of migmatite [1]), the most characteristic feature of the rocks is that oxygen isotopic homogenization proceeds on both local and regional scales in parallel with “granitization” or chemical homogenization. Granitic rocks of various origin are fairly uniform in isotopic composition with δ 18O of quartz of 12 to 14‰ (SMOW) and δ 18O of biotite of 7 to 9‰ and are about 3 to 4‰ enriched in 18O compared to other Cretaceous granites of non-metamorphic terranes in Japan. The high 18O/16O ratios of granitic rocks of this district were discussed in relation to the 18O-depletion in metasediments. Oxygen isotopic fractionations among coexisting minerals from various rock-types of the gneiss-granite complex indicate that these minerals were formed under near isotopic equilibrium at a temperature of about 600 to 700° C. Some abnormal fractionations of quartz-biotite pairs also were obtained for rocks which had undergone a progressive 18O-depletion or 18O-enrichment. This is due to high resistivity of quartz and contrastive susceptibility of biotite to isotopic exchange during metamorphism and “granitization”.  相似文献   
176.
The elastic moduli of a single-crystal calcium oxide, CaO, are measured in the temperature range from 300 to 1200 K (1.8 times of the Debye temperature) by the resonant sphere technique (RST). The lowest 18 modes are identified in the frequency range from 0.6 to 1.4 MHz for the vibrating spherical specimen, which is 5.6564 mm in diameter and 3.3493 g/cm3 in density at room temperature, and the resonant frequencies are traced as a function of temperature. The adiabatic elastic moduli are determined in the present temperature range from the observed frequencies by inversion calculations. Most of the elastic moduli, except forC 12 modulus, decrease as temperature increases. The temperature curves ofC s andC 44 moduli cross at 372 K. This means that the CaO specimen has an isotropic elasticity at the temperature. The temperature derivatives (?C 11/?T) P and (?C s/?T) P become slightly less negative with temperature increase and (?C s /?T) P and (?C 44/?T) P are almost constant. Combining the present elastic data with thermal expansion and specimen heat capacity data of CaO, we present the temperature dependence of thermodynamic parameters important in the studies of earth's interior.  相似文献   
177.
Oxygen and carbon isotope compositions were determined for calcites from the Green Tuff formations of Miocene age in Japan. Values of 18O from 24 calcites in altered rocks from 5 districts range from –2 to +16SMOW, in most cases from 0 to +8SMOW. The low 18O values rule out the possibility of their low-temperature origin or any significant contribution of magmatic fluid in the calcite precipitation. These values, coupled with their mineral assemblages, suggest that the calcites formed from meteoric hydrothermal solutions which caused propylitic alteration after the submarine strata became emergent.Values of 13C from the calcites show a wide variation from –17 to 0PDB. Calcites from different districts have different ranges of 13C values, indicating that there was no homogeneous reservoir of carbon at the time the calcite formed, and that the carbon had local sources. Carbon isotopic compositions of calcite within ore deposits in the Green Tuff formations range from –19 to 0PDB, similar to those of calcite in the altered rocks in the same district, suggesting that the carbon in ore calcites was likely supplied from the surrounding rocks through activity of meteoric hydrothermal solutions.  相似文献   
178.
179.
Abstract. The Onsen site is an active submarine hydrothermal system hosted by the Desmos caldera in the Eastern Manus Basin, Papua New Guinea. The hydrothermal fluid is very acidic (pH=1.5) and abundant native sulfur is deposited around the vent. The δ34S values of native sulfur range from -6.5 to -9.3 %o. δ34S values of H2S and SO4 in the hydrothermal fluid are -4.3 to -9.9 %o and +18.6 to +20.0 %o, respectively. These δ34S values are significantly lower than those of the other hydrothermal systems so far reported. These low δ34S values and the acidic nature of the vent fluids suggest that volcanic SO2 gas plays an important role on the sulfur isotope systematic of the Onsen hydrothermal system. Relationship among the δ34S values of S-bearing species can be successively explained by the model based on the disproportionation reaction starting from the volcanic SO2 gas. The predicted δ34S values of SO2 agree with the measured whole rock δ34S values. δD and δ18O values of clay minerals separated from the altered rock samples also suggest the contribution of the magmatic fluid to the hydrothermal system. Present stable isotopic study strongly suggests that the Onsen hydrothermal site in the Desmos caldera is a magmatic submarine hydrothermal system.  相似文献   
180.
At the 2003 Tokachi-oki earthquake of M8, seafloor phenomena such as a generation process of tsunami, seafloor uplifts, turbidity current, etc., were observed using a cabled observatory installed on the seafloor. The turbidity current was observed as a benthic storm caused presumably by the mainshock. The seafloor uplifts were observed at the mainshock and continuously after the mainshock. The uplifts were 0.35, 0.37, and 0.12 m for epicentral distances of 25.5, 31.4, and 81.7 km, respectively. After the mainshock, a continuous uplift of the seafloor is observed at all three pressure gauge locations indicating that there was a change in the state of friction on the plate boundary interface by the mainshock. In this paper, we first show what was observed using the cabled observatory installed right above the focal area of the earthquake, and then we discuss to summarize these phenomena associated with the earthquake, its possible causes, and future directions in long term monitoring of seismogenic processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号