首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   5篇
  国内免费   2篇
测绘学   1篇
大气科学   6篇
地球物理   30篇
地质学   73篇
海洋学   3篇
天文学   17篇
综合类   3篇
自然地理   2篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   9篇
  2018年   10篇
  2017年   8篇
  2016年   12篇
  2015年   9篇
  2014年   4篇
  2013年   17篇
  2012年   3篇
  2011年   8篇
  2010年   7篇
  2009年   12篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1995年   1篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1979年   1篇
排序方式: 共有135条查询结果,搜索用时 31 毫秒
131.
Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the presence of additional leachate and accelerated decomposition, the characteristics of Municipal Solid Waste (MSW) in bioreactor landfills are expected to change. About 50% of the continental United States comes under the designated seismic impact zone. The federal regulations have focused increase attention on seismic design of solid waste fills, and have mandated that the solid waste landfills located in the seismic impact zones should be designed to resist the earthquake. Accordingly, assessment of dynamic properties of landfills is one of the major geotechnical tasks in landfill engineering. In order to understand the changes in dynamic properties of bioreactor waste mass with time and decomposition, four small scale bioreactor landfills were simulated in laboratory and samples were prepared to represent each phase of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). A number of Resonant Column (RC) tests were performed to evaluate the dynamic properties (stiffness and damping) of MSW. The test results indicated that the normalized shear modulus reduction and damping curves are significantly affected by the degree of decomposition. The shear modulus increased from 2.11 MPa in Phase I to 12.56 MPa in Phase IV. The increase was attributed to the breakdown of fibrous nature of solid waste particles as it degrades. Therefore, considering MSW properties to be uniform throughout the bioreactor landfill is not a reasonable assumption and the shear modulus reduction curves should be evaluated based on the degree of MSW decomposition, rather than the sample composition itself.  相似文献   
132.
The present study deals with the geochemistry of Late Quaternary ironstones in the subsurface in Rajshahi and Bogra districts, Bangladesh with the lithological study of the boreholes sediments. Major lithofacies of the studied boreholes are clay, silty clay, sandy clay, fine to coarse grained sand, gravels and sands with(fragmentary) ironstones. The ironstones contain major oxides, Fe_2 O_3*(*total Fe)(avg. 66.6 wt%), SiO_2(avg. 15.3 wt%), Al_2 O_3(avg. 4.0 wt%), MnO(avg. 7.7 wt%), and CaO(avg. 3.4 wt%). These geochemical data imply that the higher percentage of Fe_2 O_3* along with Al_2 O_3 and MnO indicate the ironstone as goethite and siderite, which is also validated by XRD data. A comparatively higher percentage of SiO_2 indicates the presence of relative amounts of clastic quartz and manganese-rich silicate or clay in these rocks. These ironstones also have significant amounts of MnO(avg. 7.7 wt%) suggesting their depositional environments under oxygenated condition. Chemical data of these ironstones suggest that the source rock suffered deep chemical weathering and iron was mostly carried in association with the clay fraction and organic matter. Iron concretion was mostly formed by bacterial build up in swamps and marshes, and was subsequently embedded in clayey mud.Within the coastal environments, the water table fluctuates and goethite and siderite with mud and quartz became dry and compacted to form ironstone.  相似文献   
133.
Oceanic tidal fluctuations which propagate long distances up coastal rivers can be exploited to constrain hydraulic properties of riverbank aquifers. These estimates, however, may be sensitive to degree of aquifer confinement and aquifer anisotropy. We analyzed the hydraulic properties of a tidally influenced aquifer along the Meghna River in Bangladesh using: (1) slug tests combined with drilling logs and surface resistivity to estimate Transmissivity (T); (2) a pumping test to estimate T and Storativity (S) and thus Aquifer Diffusivity (DPT); and (3) the observed reduction in the amplitude and velocity of a tidal pulse to calculate D using the Jacob‐Ferris analytical solution. Average Hydraulic Conductivity (K) and T estimated with slug tests and borehole lithology were 27.3 m/d and 564 m2/d, respectively. Values of T and S determined from the pumping test ranged from 400 to 500 m2/d and 1 to 5 × 10?4, respectively with DPT ranging from 9 to 40 × 105 m2/d. In contrast, D estimated from the Jacob‐Ferris model ranged from 0.5 to 9 × 104 m2/d. We hypothesized this error resulted from deviations of the real aquifer conditions from those assumed by the Jacob‐Ferris model. Using a 2D numerical model tidal pulses were simulated across a range of conditions and D was calculated with the Jacob‐Ferris model. Moderately confined (Ktop/Kaquifer < 0.01) or anisotropic aquifers (Kx/Kz > 10) yield D within a factor of 2 of the actual value. The order of magnitude difference in D between pumping test and Jacob‐Ferris model at our site argues for little confinement or anisotropy.  相似文献   
134.
The trophic structure of a community is used to infer ecosystem functioning(e.g. energy transfer and nutrient cycling). Here the trophic structure of the benthic infaunal and epifaunal communities in the Brunei Estuary are characterized, and their distribution along an estuarine pH gradient is analyzed using univariate and multivariate techniques. This analysis revealed that surface deposit feeders(e.g., polychaetes) were numerically dominant within the infaunal communities whereas in the epifaunal communities filter feeders(e.g., bivalves) were highly abundant. Species richness for almost all trophic groups increased toward the lower estuary, except for omnivores in the epifaunal communities, which decreased markedly. Both Analysis of Variance(ANOVA) and Analysis of Similarities(ANOSIM) detected significant differences in the density of respective trophic groups among stations. Within infaunal communities, both Biological and Environmental procedure(BIO-ENV) and Canonical Correspondence Analysis(CCA) showed that trophic shifts were associated with environmental gradients. Surface-deposit feeders and omnivores were the most abundant macrobenthos of the upper estuary characterized by low salinity, low pH, and a higher percentage of mud particles. The proportion of filter feeders and carnivores increased with salinity/pH and sand. A more uniform distribution of trophic structure was found in the lower estuary, with high salinity and pH over sandy habitat. In contrast, within epifaunal trophic groups,the percentage of surface deposit feeders and omnivores declined, but filter feeders remarkably increased toward the sea. The proportion of carnivores remained similar at all stations. Non-Metric Multidimensional Scaling(nMDS) ordination for epifaunal trophic groups clearly demarcated higher salinity/pH stations from lower salinity/pH stations, suggesting different trophic compositions along the estuarine pH gradient.  相似文献   
135.
Natural Hazards - In 2018, Lombok island, Indonesia, was hit by a series of destructive earthquakes that caused thousands of casualties and widespread material damage. In response to those events,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号