首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31190篇
  免费   1626篇
  国内免费   168篇
测绘学   606篇
大气科学   1622篇
地球物理   8294篇
地质学   11993篇
海洋学   2610篇
天文学   6525篇
综合类   68篇
自然地理   1266篇
  2022年   308篇
  2021年   560篇
  2020年   555篇
  2019年   728篇
  2018年   1355篇
  2017年   1339篇
  2016年   1504篇
  2015年   912篇
  2014年   1352篇
  2013年   2013篇
  2012年   1453篇
  2011年   1594篇
  2010年   1533篇
  2009年   1620篇
  2008年   1436篇
  2007年   1511篇
  2006年   1318篇
  2005年   804篇
  2004年   741篇
  2003年   775篇
  2002年   740篇
  2001年   685篇
  2000年   591篇
  1999年   411篇
  1998年   400篇
  1997年   395篇
  1996年   297篇
  1995年   328篇
  1994年   318篇
  1993年   227篇
  1992年   249篇
  1991年   225篇
  1990年   247篇
  1989年   229篇
  1988年   195篇
  1987年   216篇
  1986年   211篇
  1985年   249篇
  1984年   234篇
  1983年   244篇
  1982年   237篇
  1981年   213篇
  1980年   204篇
  1979年   223篇
  1978年   207篇
  1977年   180篇
  1976年   160篇
  1975年   174篇
  1974年   154篇
  1973年   208篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
101.
The purpose of this work was to reinvestigate the existing hydrogeological conceptual model of the basin of Madrid, Spain. A cumulative chemical isotopic diagram which enabled the distinction between different groups of water as well as calculation of the mode of their blending was used for this investigation. It was found that the groups of discharge were lighter in their isotopic composition than that of recharge. The previous explanation of this fact, backed by carbon-14 dating, was the long residence time due to flow lines going down to depths of more than 1000 m. This flow model assumes homogenous conditions to these depths. This assumption can not be supported by evidence from deep wells. Thus a modified model is suggested which maintains homogenous conditions only to about 300 m and a deep confined aquifer below containing paleowater. The higher degree of depletion of this water has been explained by a colder climate on top of an altitude effect. Another interesting observation was the correlation between the isotopic composition of the rains, the month of the rain event and the composition of the recharge group groundwater. It could be seen that the winter rains resemble the groundwater composition, which shows that practically all the spring and summer rains were evapotranspirated.  相似文献   
102.
Abstract Large calcite veins and pods in the Proterozoic Corella Formation of the Mount Isa Inlier provide evidence for kilometre-scale fluid transport during amphibolite facies metamorphism. These 10- to 100-m-scale podiform veins and their surrounding alteration zones have similar oxygen and carbon isotopic ratios throughout the 200 × 10-km Mary Kathleen Fold Belt, despite the isotopic heterogeneity of the surrounding wallrocks. The fluids that formed the pods and veins were not in isotopic equilibrium with the immediately adjacent rocks. The pods have δ13Ccalcite values of –2 to –7% and δ18Ocalcite values of 10.5 to 12.5%. Away from the pods, metadolerite wallrocks have δ18Owhole-rock values of 3.5 to 7%. and unaltered banded calc-silicate and marble wallrocks have δ13Ccalcite of –1.6 to –0.6%, and δ18Ocalcite of 18 to 21%. In the alteration zones adjacent to the pods, the δ18O values of both metadolerite and calc-silicate rocks approach those of the pods. Large calcite pods hosted entirely in calc-silicates show little difference in isotopic composition from pods hosted entirely in metadolerite. Thus, 100- to 500-m-scale isotopic exchange with the surrounding metadolerites and calc-silicates does not explain the observation that the δ18O values of the pods are intermediate between these two rock types. Pods hosted in felsic metavolcanics and metasiltstones are also isotopically indistinguishable from those hosted in the dominant metadolerites and calc-silicates. These data suggest the veins are the product of infiltration of isotopically homogeneous fluids that were not derived from within the Corella Formation at the presently exposed crustal level, although some of the spread in the data may be due to a relatively small contribution from devolatilization reactions in the calc-silicates, or thermal fluctuations attending deformation and metamorphism. The overall L-shaped trend of the data on plots of δ13C vs. δ18O is most consistent with mixing of large volumes of externally derived fluids with small volumes of locally derived fluid produced by devolatilization of calc-silicate rocks. Localization of the vein systems in dilatant sites around metadolerite/calc-silicate boundaries indicates a strong structural control on fluid flow, and the stable isotope data suggest fluid migration must have occurred at scales greater than at least 1 km. The ultimate source for the external fluid is uncertain, but is probably fluid released from crystallizing melts derived from the lower crust or upper mantle. Intrusion of magmas below the exposed crustal level would also explain the high geothermal gradient calculated for the regional metamorphism.  相似文献   
103.
About a dozen physical mechanisms and models aspire to explain the negative polarization of light scattered by atmosphereless celestial bodies. This is too large a number for the reliable interpretation of observational data. Through a comparative analysis of the models, our main goal is to answer the question: Does any one model have an advantage over the others? Our analysis is based on new laboratory polarimetric and photometric data as well as on theoretical results. We show that the widely used models due to Hopfield and Wolff cannot realistically explain the phase-angle dependence of the degree of polarization observed at small phase angles. The so-called interference or coherent backscattering mechanism is the most promising model. Models based on that mechanism use well-defined physical parameters to explain both negative polarization and the opposition effect. They are supported by laboratory experiments, particularly those showing enhancement of negative polarization with decreasing particle size down to the wavelength of light. According to the interference mechanism, pronounced negative branches of polarization, like those of C-class asteroids, may indicate a high degree of optical inhomogeneity of light-scattering surfaces at small scales. The mechanism also seems appropriate for treating the negative polarization and opposition effects of cometary dust comae, planetary rings, and the zodiacal light.  相似文献   
104.
105.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   
106.
107.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   
108.
Túnyi  I.  Guba  P.  Roth  L. E.  Timko  M. 《Earth, Moon, and Planets》2003,93(1):65-74
Lightning discharge generated in the protoplanetary nebula is viewed as a temporally isolated surge in the flow of electrically charged particles, similar to that of terrestrial lightning. If the current is intense enough, a powerful circular impulse magnetic field is generated around the instantaneous virtual electric conductor. Such magnetic field is capable of magnetizing dust grains containing ferromagnetic components present in its vicinity to their saturation levels. As a result, dust grains attract one another, forming the aggregates. This magnetically driven attraction suggests an important process possibly operational at an early stage of the planetary accretion. Based on both a classical model for electric conductor, and the theory of Lienard–Wiechert electromagnetic potentials, our calculations show that the magnetic impulse due to a discharge channel of a few cm in diameter transferring a charge of about 104 electrons reaches as high as 10 T. At these magnetic fields, the ferromagnetic dust grains, and possibly the already-formed larger aggregates as well, are easily magnetized to the saturation levels, producing compact clusters exhibiting permanent magnetic moments.  相似文献   
109.
The trans-Neptunian belt has been subject to a strong depletion that has reduced its primordial population by a factor of one hundred over the solar system's age. One by-product of such a depletion process is the existence of a scattered disk population in transit from the belt to other places, such as the Jupiter zone, the Oort cloud or interstellar space. We have integrated the orbits of the scattered disk objects (SDOs) so far discovered by 2500 Myr to study their dynamical time scales and the probability of falling in each of the end states mentioned above, paying special attention to their contribution to the Oort cloud. We found that their dynamical half-time is close to 2.5 Gyr and that about one third of the SDOs end up in the Oort cloud.  相似文献   
110.
Abstract— Carbon isotopic compositions were measured for shock‐produced diamond and shocked graphite formed at peak pressures ranging from 37 to 52 GPa. The δ13C values of diamonds produced in a sealed container were generally lower than that of the initial graphite. The differences in the carbon isotopic composition between initial graphite and shocked graphite/diamond may reflect kinetic isotopic fractionation during the oxidation of the graphite/diamond and/or analytical artifacts possibly induced by impurities in the samples. The pressure effect on the isotopic fractionations between graphite and diamond can be estimated from the δ13C values of impurity‐free diamonds produced using a vented container from which gases, including oxygen, in pore spaces escaped during or after the diamond formation (e.g., 0.039 ± 0.085‰ at a peak pressure of 52 GPa). Any isotopic fractionation induced by shock conversion of graphite to diamond is too small to be detected in natural shock‐induced diamond‐graphite systems related to terrestrial impact cratering processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号