首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   5篇
测绘学   1篇
大气科学   4篇
地球物理   39篇
地质学   20篇
海洋学   5篇
天文学   11篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2020年   6篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1996年   4篇
  1995年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1954年   1篇
  1950年   1篇
  1948年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
41.
A model of slow-moving disturbances of deformation is proposed to interpret the observed propagations of earthquake foci and nonseismic creep. The analysis is based on the assumption that thin fault gouge participates in the viscous slip. Nonuniform deformation diffusses at the rate of ν = μw/2η for the gouge of viscosity η and thickness w that is enclosed by the elastic rocks of rigidity μ. A crack-like solution propagates uniformly, involving the discontinuity that bounds the faulted area by an unfractured part, or by another gouge with different viscosity. The unit of the propagation velocity of such cracks is also given by the above-defined ν. Comparing the expression of ν with the various field observations, most of which yield the propagation speeds of 10–104 km/year, the effective viscosity of the gouge is estimated as 1011–1014 poises. The nonseismic fault creep in central California is analysed, and a little higher value of acting stress is obtained than the result of Nason and Weertman (1973).  相似文献   
42.
The pumping up of orbital inclinations of asteroids caused by sweeping secular resonances associated with depletion of a protoplanetary disk is discussed, focusing on the dependence on the disk inclinations and surface density distribution. The asteroids have large mean inclinations that cannot be explained by present planetary perturbations alone. It has been suggested that the sweeping secular resonances caused by disk depletion are responsible for these high inclinations. Nagasawa et al. (2000, Astron. J.119, 1480-1497) showed that the inclinations of asteroids are pumped up if the disk is depleted in an inside-out manner on a time scale longer than 3×105 years. Their assumed disk midplane is not on the invariant plane. However, it should be affected by the inclination of the disk plane. Here we investigate the dependence on the disk inclinations. We assume a disk depletion model in which the disk inside the jovian orbit has been removed and the residual outer disk is uniformly depleted. We calculate the locations of the secular resonances and the excitation magnitude of the inclinations with analytical methods. We found that the inclinations are pumped up to the observational level for a depletion time scale longer than 106 years in the case of the disk plane that coincides with the invariant plane. The required time scale is longest (3×106 years) if the disk plane coincides with the jovian orbital plane. However, it is still within the observationally inferred depletion time scale. We also studied dependence on a disk surface density gradient and found that the results do not change significantly as long as the inner disk depletion is faster than the outer disk one.  相似文献   
43.
We have studied 56 unfractured chalk samples of the Upper Cretaceous Tor Formation of the Dan, South Arne and Gorm Fields, Danish North Sea. The samples have porosities of between 14% and 45% and calcite content of over 95%. The ultrasonic compressional‐ and shear‐wave velocities (VP and VS) for dry and water‐saturated samples were measured at up to 75 bar confining hydrostatic pressure corresponding to effective stress in the reservoir. The porosity is the main control of the ultrasonic velocities and therefore of the elastic moduli. The elastic moduli are slightly higher for samples from the South Arne Field than from the Dan Field for identical porosities. This difference may be due to textural differences between the chalk at the two locations because we observe that large grains (i.e. filled microfossils and fossil fragments) that occur more frequently in samples from the Dan Field have a porosity‐reducing effect and that samples rich in large grains have a relatively low porosity for a given P‐wave modulus. The clay content in the samples is low and is mainly represented by either kaolinite or smectite; samples with smectite have a lower P‐wave modulus than samples with kaolinite at equal porosity. We find that ultrasonic VP and VS of dry chalk samples can be satisfactorily estimated with Gassmann's relationships from data for water‐saturated samples. A pronounced difference between the VP/VS ratios for dry and water‐saturated chalk samples indicates promising results for seismic amplitude‐versus‐offset analyses.  相似文献   
44.
45.
ABSTRACT

Ertsen discusses the representation of reality and uncertainty in our paper, raising three critical points. In response to the first, we agree that discussion of different interpretations of the concept of uncertainty is important when developing perceptual models – making different uncertainty interpretations explicit was a key motivation behind our method. Secondly, we do not, as Ertsen suggests, deny anyone who is not a “certified” scientist to have relevant knowledge. The elicitation of diverse views by discussing perceptual models is a basis for open discussion and decision making. Thirdly, Ertsen suggests that it is not useful to treat socio-hydrological systems as if they exist. We argue that we act as “pragmatic realists” in most practical applications by treating socio-hydrological systems as an external reality that can be known. But the uncertainty that arises from our knowledge limitations needs to be recognized, as it may impact on practical decision making and associated costs.  相似文献   
46.
47.
48.
The extent to which nations and regions can actively shape the future or must passively respond to global forces is a topic of relevance to current discourses on climate change. In Australia, climate change has been identified as the greatest threat to the ecological resilience of the Great Barrier Reef, but is exacerbated by regional and local pressures. We undertook a scenario analysis to explore how two key uncertainties may influence these threats and their impact on the Great Barrier Reef and adjacent catchments in 2100: whether (1) global development and (2) Australian development is defined and pursued primarily in terms of economic growth or broader concepts of human well-being and environmental sustainability, and in turn, how climate change is managed and mitigated. We compared the implications of four scenarios for marine and terrestrial ecosystem services and human well-being. The results suggest that while regional actions can partially offset global inaction on climate change until about mid-century, there are probable threshold levels for marine ecosystems, beyond which the Great Barrier Reef will become a fundamentally different system by 2100 if climate change is not curtailed. Management that can respond to pressures at both global and regional scales will be needed to maintain the full range of ecosystem services. Modest improvements in human well-being appear possible even while ecosystem services decline, but only where regional management is strong. The future of the region depends largely on whether national and regional decision-makers choose to be active future ‘makers’ or passive future ‘takers’ in responding to global drivers of change. We conclude by discussing potential avenues for using these scenarios further with the Great Barrier Reef region's stakeholders.  相似文献   
49.
Climate Dynamics - The potential link between decreasing Barents-Kara sea ice and cold winters in Europe is investigated using the enhanced resolution (horizontal atmospheric resolution of $$\sim...  相似文献   
50.
The Norwegian Channel between Skagerrak, in the southeast, and the continental margin of the northern North Sea, in the northwest, is the result of processes related to repeated ice stream activity through the last 1.1 m yr. In such periods the Skagerrak Trough (700 m deep) has acted as a confluence area for glacial ice from southeastern Norway, southern Sweden and parts of the Baltic. Possibly related to the threshold in the Norwegian Channel off Jæren (250 m deep), the ice stream, on a number of occasions over the last 400 ka, inundated the coastal lowlands and left an imprint of NW‐oriented ice directional features (drumlins, stone orientations in tills and striations). Marine interstadial sediments found up to 200 m a.s.l. on Jæren have been suggested to reflect glacial isostasy related to the Norwegian Channel Ice Stream (NCIS). In the channel itself, the ice stream activity is evidenced by mega‐scale glacial lineations on till surfaces. As a result of subsidence, the most complete sedimentary records of early phases of the NCIS are preserved close to the continental margin in the North Sea Fan region. The strongest evidence for ice stream erosion during the last glacial phase is found in the Skagerrak. On the continental slope the ice stream activity is evidenced by the large North Sea Fan, which is mainly a result of deposition of glacial‐fed debris flows. Northwards of the North Sea Fan, rapid deposition of meltwater plume deposits, possibly related to the NCIS, is detected as far north as the Vøring Plateau. The NCIS system offers a unique possibility to study ice stream related processes and the impact the ice stream development had on open ocean sedimentation and circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号