首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   16篇
  国内免费   17篇
测绘学   6篇
大气科学   46篇
地球物理   123篇
地质学   164篇
海洋学   79篇
天文学   66篇
综合类   4篇
自然地理   19篇
  2022年   6篇
  2021年   13篇
  2020年   17篇
  2019年   13篇
  2018年   24篇
  2017年   17篇
  2016年   29篇
  2015年   12篇
  2014年   22篇
  2013年   24篇
  2012年   25篇
  2011年   22篇
  2010年   28篇
  2009年   26篇
  2008年   27篇
  2007年   28篇
  2006年   18篇
  2005年   18篇
  2004年   18篇
  2003年   12篇
  2002年   20篇
  2001年   14篇
  2000年   10篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1964年   1篇
  1957年   1篇
排序方式: 共有507条查询结果,搜索用时 46 毫秒
501.
Small-scale slip heterogeneity or variations in rupture velocity on the fault plane are often invoked to explain the high-frequency radiation from earthquakes. This view has no theoretical basis, which follows, for example, from the representation integral of elasticity, an exact solution for the radiated wave field. The Fourier transform, applied to the integral, shows that the seismic spectrum is fully controlled by that of the source time function, while the distribution of final slip and rupture acceleration/deceleration only contribute to directivity. This inference is corroborated by the precise numerical computation of the full radiated field from the representation integral. We compare calculated radiation from four finite-fault models: (1) uniform slip function with low slip velocity, (2) slip function spatially modulated by a sinusoidal function, (3) slip function spatially modulated by a sinusoidal function with random roughness added, and (4) uniform slip function with high slip velocity. The addition of “asperities,” both regular and irregular, does not cause any systematic increase in the spectral level of high-frequency radiation, except for the creation of maxima due to constructive interference. On the other hand, an increase in the maximum rate of slip on the fault leads to highly amplified high frequencies, in accordance with the prediction on the basis of a simple point-source treatment of the fault. Hence, computations show that the temporal rate of slip, not the spatial heterogeneity on faults, is the predominant factor forming the high-frequency radiation and thus controlling the velocity and acceleration of the resulting ground motions.  相似文献   
502.
Water Resources - Floods are one of the most common natural hazards and as such, they are causing a great loss of human life as well as great economic damages. Flood frequency analysis (FFA) is...  相似文献   
503.
The mobility and retention of heavy metals, arsenic and sulphur in podzols from eight areas located north of the Arctic Circle in Finland, Norway and Russia were determined by analyzing the < 2.0 mm fraction, using an ammonium acetate (pH 4.5) extraction in addition to a concentrated nitric acid digestion for the humus samples, and a hot aqua regia digestion for the mineral soil samples. Total C, H and N concentrations were determined in humus and mineral soil samples with a CHN analyser.Ni, Cu, Co and As were strongly enriched in the humus layer in the contaminated sites (Monchegorsk, Kurka, Zapoljarnij) when compared to their concentrations in the parent tills and in podzols from the background sites. In most study sites the illuvial layer showed a low capacity to retain the metals and As, the exception included a strongly eroded profile at Monchegorsk, where Ni was tightly fixed in the illuvial layer while Cu was mobile. In contrast to metals, airborne S was not accumulated in the humus layer, but was accumulated in the illuvial layer, more markedly at eroded sites than in places where the humus was covered as at Monchegorsk.  相似文献   
504.
Reliable information on the distribution of magnetic fields across the whole surface of the Sun is urgently needed to predict conditions in the solar corona, in the interplanetary medium, and in the near-Earth space (space weather). Several space- and ground-based solar instruments currently provide full-disk magnetograms. However, these measurements sometimes differ very significantly, which makes a cross-calibration of different datasets and searching for the reasons for such differences a very crucial task. Here, we analyze the Huairou Solar Observing Station (HSOS) Solar Magnetism and Activity Telescope (SMAT) full-disk line-of-sight magnetograms in comparison with magnetograms taken at the Solar Dynamic Observatory/Helioseismic and Magnetic Imager (SDO/HMI) and Solar Telescope for Operative Predictions (STOP) instruments. We show systematic differences between original SMAT magnetograms and those of other telescopes. The differences are caused by some SMAT instrumental problems, which we investigate. We suggest methods for compensating for these effects that have improved the quality of SMAT magnetograms. These methods will enable us to use SMAT measurements to solve many solar physics problems that are related to studying global solar magnetism and space weather.  相似文献   
505.
We present results of a high resolution study of the filamentary infrared dark cloud G192.76+00.10 in the S254-S258 OB complex in several molecular species tracing different physical conditions. These include three isotopologues of carbon monoxide(CO), ammonia(NH3) and carbon monosulfide(CS). The aim of this work is to study the general structure and kinematics of the filamentary cloud, and its fragmentation and physical parameters. The gas temperature is derived from the NH3(J, K) =(1,1),(2, 2) and ~(12)CO(2-1) lines, and the ~(13)CO(1-0), ~(13)CO(2-1) emission is used to investigate the overall gas distribution and kinematics. Several dense clumps are identified from the CS(2-1)data. Values of the gas temperature lie in the range 10-35 K, and column density N(H2) reaches the value 5.1 x 10~(22) cm~(-2). The width of the filament is of order 1 pc. The masses of the dense clumps range from ~ 30 M_☉ to ~ 160 M_☉. They appear to be gravitationally unstable. The molecular emission shows a gas dynamical coherence along the filament. The velocity pattern may indicate longitudinal collapse.  相似文献   
506.
507.
A sulfur budget for the Black Sea anoxic zone   总被引:1,自引:0,他引:1  
A budget for the sulfur cycle in the Black Sea is proposed which incorporates specific biogeochemical process rates. The average sulfide production in the water column is estimated to be 30–50 Tg yr−1, occurring essentially in the layer between 500 and 2000 m. About 3.2–5.2 Tg sulfide yr−1 form during sulfate reduction in surface sediments of the anoxic zone. Total sulfur burial in anoxic sediments of 1 Tg yr−1 consists of 10–70% (ca. 40–50% is the average) water column formed (syngenetic) component, the rest being diagenetic pyrite. As a maximum, between 3 and 5 Tg yr−1 contribute sulfide to the bottom water or diffuse downward in the sediment. About 20–50 Tg yr−1 sulfide is oxidized mostly at the chemocline and about 10–20% of this amount (4.4–9.2 Tg yr−1) below the chemocline by the oxygen of the Lower Bosphorus Current. A model simulating the vertical distribution of sulfide in the Black Sea water column shows net consumption in the upper layers down to ca. 500 m, essentially due to oxidation at the chemocline, and net production down to the bottom. On the basis of the calculated budget anoxic conditions in the Black Sea are sustained by the balance between sulfide production in the anoxic water column and oxidation at the chemocline. On average the residence time of sulfide in the anoxic zone is about 90–150 yr, comparable to the water exchange time between oxic and anoxic zones. Hydrophysical control on the sulfur cycle appears to be the main factor regulating the extent of anoxic conditions in the Black Sea water column, rather than rates of biogeochemical processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号