首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   15篇
  国内免费   17篇
测绘学   6篇
大气科学   40篇
地球物理   118篇
地质学   153篇
海洋学   42篇
天文学   48篇
综合类   4篇
自然地理   19篇
  2022年   5篇
  2021年   10篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   12篇
  2016年   24篇
  2015年   11篇
  2014年   20篇
  2013年   22篇
  2012年   20篇
  2011年   19篇
  2010年   23篇
  2009年   26篇
  2008年   21篇
  2007年   23篇
  2006年   13篇
  2005年   17篇
  2004年   18篇
  2003年   12篇
  2002年   19篇
  2001年   12篇
  2000年   9篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1964年   1篇
  1957年   1篇
排序方式: 共有430条查询结果,搜索用时 46 毫秒
161.
We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by three kinds of the inhomogeneities; i.e., inhomogeneous turbulence, the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field.  相似文献   
162.
Evolution of an anticyclonic eddy southwest of Taiwan   总被引:8,自引:1,他引:7  
Satellite images of sea-surface temperature, surface chlorophyll a concentration, and sea-level anomaly, together with ocean reanalysis data of Asia and Indian–Pacific Ocean (AIPOcean1.0), are utilized to study the three-dimensional characteristics and evolution of an anticyclonic warm eddy adjacent to the southwest coast of Taiwan during October and November 2006. Originated from the Kuroshio intrusion in the Luzon Strait, but unlike previously found westward moving anticyclonic eddies (AE) in the northeastern South China Sea, this AE was so close to the Taiwan coast and stayed where it was formed for over 1 month until it dissipated. Energy analysis is utilized to study the evolution process of the AE, and it shows that the barotropic instability (BTI) and baroclinic instability introduced by the Kuroshio intrusion flow appear to be the main energy sources for the AE. Periodical enhancement/relaxation of local northeasterly monsoon and its associated negative wind stress curl modify the current patterns in this region, reinforce the intraseasonal variability of the Kuroshio intrusion flow, and act together with Kuroshio to form the AE. Eddies detected from AIPOcean1.0 data also show that AEs are most likely to be generated southwest of Taiwan during the transition period of summer monsoon to winter monsoon, and generally, the BTI of Kuroshio intrusion contributes more than the direct wind stress work to the increase of the eddy kinetic energy for the generation and growth of the AEs.  相似文献   
163.
Collaborations amongst researchers from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan and the International Arctic research Center (IARC), University of Alaska Fairbanks (UAF), U.S., have been on-going since 1998 and resulted in a great number and magnitude of accomplishments that could not have been achieved without this close partnership. The Arctic represents an important region for Japan, the U.S. and the world, and many opportunities and challenges press for immediate understanding to enable wise decisions and policy making. We have many common interests and our countries face many common problems and goals. Addressing the tremendous scientific challenges of the Arctic requires such massive investment of manpower and resources that sharing efforts, data and working together on expeditions are in our mutual best interests.This issue presents a compilation of selected results on recent analyses conducted in the five-year (2009–2014) research term related to observational studies, model development and remote sensing applications of the Arctic Ocean, adjacent marginal seas, and the surrounding terrestrial regions. All of these studies are intended to provide a better understanding of how individual components and processes interact to form a complex and dynamic arctic system. Through these collaborations, Japanese and UAF Arctic researchers can achieve our goals of developing a quantitative understanding of the Arctic System.  相似文献   
164.
We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bourgeat, Jurak, and Smaï, we formulate the governing equations in terms of liquid pressure and dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic–parabolic system of partial differential equations, in which the equations degenerate when the gas phase disappears. We develop a discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for time discretization and an incomplete Newton method for linearization. Numerical examples deal with gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock types.  相似文献   
165.
Laboratory samples of Westerly granite were impacted by a falling striker, and the time series of acoustic and electromagnetic emission (AE and EME) from fracturing rock were recorded with the time resolution of 10?ns. In order to determine precisely the actual instants of beginning and termination of fracturing, the fractoluminescence (FL) signal related to chemical bond ruptures on the sample surface was recorded in parallel to both AE and EME signals. Energy distributions in all three series were characterized by the function N(E?>?E′), where N is the number of emitted signals characterized with the energy release E exceeding a threshold value E′. The fracture dynamics was studied using both the scaling analysis and the non-extensive Tsallis statistics. The energy distributions were approximated with both the empirical Gutenberg–Richter-type relation N(E?>?E′) ∝ E?b , and the analytical function N q (E?>?E′) that includes the Tsallis’ parameter of non-extensivity, q, and the released energy density. A comparative consideration of information taken from the data of EME, AE and FL emission techniques was carried out in the context of the physical sense of the parameters b and q. The AE time series reflected adequately the cracking process both at microscopic and laboratory scale levels, while the photon emission did not show a direct response on the split-off formation. Time resolution of the EME method was found to be insufficient for studying the dynamic fracture of the given kind.  相似文献   
166.
Debris-flow activity on the forested cone of the Ritigraben torrent (Valais, Swiss Alps) was assessed from growth disturbances in century-old trees, providing an unusually complete record of past events and deposition of material. The study of 2246 tree-ring sequences sampled from 1102 Larix decidua Mill., Picea abies (L.) Karst. and Pinus cembra ssp. sibirica trees allowed reconstruction of 123 events since AD 1566. Geomorphic mapping permitted identification of 769 features related to past debris-flow activity on the intermediate cone. The features inventoried in the study area covering 32 ha included 291 lobes, 465 levées and 13 well-developed debris-flow channels. Based on tree-ring records of disturbed trees growing in or next to the deposits, almost 86% of the lobes identified on the present-day surface could be dated. A majority of the dated material was deposited over the last century. Signs of pre-20th century events are often recognizable in the tree-ring record of survivor trees, but the material that caused the growth anomaly in trees has been completely overridden or eroded by more recent debris-flow activity.Tree-ring records suggest that cool summers with frequent snowfalls at higher elevations regularly prevented the release of debris flows between the 1570s and 1860s; the warming trend combined with greater precipitation totals in summer and autumn between 1864 and 1895 provided conditions that were increasingly favorable for releasing events from the source zone. Enhanced debris-flow activity continued well into the 20th century and reconstructions show a clustering of events in the period 1916–1935 when warm–wet conditions prevailed during summer in the Swiss Alps. In contrast, very low activity is observed for the last 10-yr period (1996–2005) with only one debris-flow event recorded on August 27, 2002. Since sediment availability is not a limiting factor, this temporal absence of debris-flow activity is due to an absence of triggering events, which not only shifted from June and July to August and September over the 20th century, but also seemed to be initiated primarily by persistent precipitation rather than summer thunderstorms. From the reconstructions, based on RCM simulations, there are indications that debris-flow frequencies might continue to decrease in the future, as precipitation events are projected to occur less frequently in summer but become more common in spring or autumn.  相似文献   
167.
Attempts to build a “constant-stress-drop” scaling of an earthquake-source spectrum have invariably met with difficulties. Physically, such a scaling would mean that the low-frequency content of the spectrum would control the high-frequency one, reducing the number of the parameters governing the time history of a shear dislocation to one. This is technically achieved through relationships of the corner frequency of the spectrum to the fault size, inevitably introduced in an arbitrary manner using a constant termed “stress drop”. Throughout decades of observations, this quantity has never proved to be constant. This fact has fundamental physical reasons. The dislocation motion is controlled by two independent parameters: the final static offset and the speed at which it is reached. The former controls the low-frequency asymptote of the spectrum while the latter its high-frequency content. There is no physical reason to believe that the static displacement should predetermine the slip rate, which would be implied if the “stress drop” were constant. Reducing the two parameters to just one (the seismic moment or magnitude) in a “scaling law” has no strict justification; this would necessarily involve arbitrary assumptions about the relationship of one parameter to the other. This explains why the “constant-stress-drop” scaling in seismology has been believed in but never reconciled with the data.  相似文献   
168.
169.
170.
Igor Esau 《Ocean Dynamics》2014,64(5):689-705
A turbulence-resolving parallelized atmospheric large-eddy simulation model (PALM) has been applied to study turbulent interactions between the humid atmospheric boundary layer (ABL) and the salt water oceanic mixed layer (OML). The most energetic three-dimensional turbulent eddies in the ABL–OML system (convective cells) were explicitly resolved in these simulations. This study considers a case of shear-free convection in the coupled ABL–OML system. The ABL–OML coupling scheme used the turbulent fluxes at the bottom of the ABL as upper boundary conditions for the OML and the sea surface temperature at the top of the OML as lower boundary conditions for the ABL. The analysis of the numerical experiment confirms that the ABL–OML interactions involve both the traditional direct coupling mechanism and much less studied indirect coupling mechanism (Garrett Dyn Atmos Ocean 23:19–34, 1996). The direct coupling refers to a common flux-gradient representation of the air–sea exchange, which is controlled by the temperature difference across the air–water interface. The indirect coupling refers to thermal instability of the Rayleigh–Benard convection, which is controlled by the temperature difference across the entire mixed layer through formation of the large convective eddies or cells. The indirect coupling mechanism in these simulations explained up to 45 % of the ABL–OML co-variability on the turbulent scales. Despite relatively small amplitude of the sea surface temperature fluctuations, persistence of the OML cells organizes the ABL convective cells. Water downdrafts in the OML cells tend to be collocated with air updrafts in the ABL cells. The study concludes that the convective structures in the ABL and the OML are co-organized. The OML convection controls the air–sea turbulent exchange in the quasi-equilibrium convective ABL–OML system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号