首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   7篇
  国内免费   19篇
测绘学   8篇
大气科学   33篇
地球物理   74篇
地质学   115篇
海洋学   31篇
天文学   35篇
综合类   1篇
自然地理   10篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   10篇
  2018年   22篇
  2017年   22篇
  2016年   14篇
  2015年   9篇
  2014年   13篇
  2013年   11篇
  2012年   14篇
  2011年   20篇
  2010年   23篇
  2009年   12篇
  2008年   23篇
  2007年   31篇
  2006年   13篇
  2005年   3篇
  2004年   7篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有307条查询结果,搜索用时 31 毫秒
21.
A detailed analysis of recording peculiarities at seismic stations of the Uniform System of Seismic Observations (USSO) is presented a complicated nature of the source being shown. Consideration is given to parameters of the earthquake source, including the seismic moment and the length of the rupture.Comparison of magnitudes MLH and MPV indicates an anomalous attenuation in surface waves, itis is 3–4 times weaker than it had been noticed in case of other intermediate-depth Carpathian earthquakes.On the basis of comparison of the logarithm of the ratio of P-wave spectra at different epicentral distances (30° –70° ), the fac tor characterizing the absorption of P wave is found to remain practically unchanged.Average value of the seismic moment is estimated to be 2.6 × 1027 dyne × cm, the most reasonable length of the rupture 58 km, and its focus 100 –130 km. The source parameters of the earthquake in question are compared with those of the earthquake of November 10, 1940.  相似文献   
22.
This study investigates how the choice of the planetary boundary layer (PBL) parameterization and dust emission scheme affects the prediction of dust entrainment simulated with a regional mesoscale model. For this analysis we consider a representative dust episode which occurred on April 2001 in the Aral Sea region. The meteorological fields were simulated using the PSU/NCAR MM5 modeling system considering two different boundary layer parameterizations. In each case, emitted dust fluxes were computed off-line by incorporating MM5 meteorological fields into the dust module DuMo. Several dust emission schemes with a prescribed erodible fraction and fixed threshold wind speed were the subject of our analysis. Implications to assessment of the anthropogenic fraction of dust emitted in the Aral region were investigated by conducting the full, half, and no lake modeling experiments.Our results show that the discrepancies in dust fluxes between the two different PBLs are much higher compared to the discrepancy associated with the use of considered dust production schemes. Furthermore, the choice of the PBL affects the timing and duration of a modeled dust event. We demonstrate that different combinations of the PBL parameterization and wind- or friction velocity-driven dust emission schemes can result in up to about a 50% difference in predicted dust mass caused by the Aral Sea desiccation. We found that the drying-up of the Aral cannot only affect the dust emission by expanding the source area, but also by affecting atmospheric characteristics, especially winds. These competitive factors add further complexity to quantification of the anthropogenic dust fraction in the region.  相似文献   
23.

Siliceous unicellular microalgae — diatoms and silicoflagellates from sediments in Amur Bay were analyzed with high temporal resolution to examine changes over the last 150 years. The age of sediments was estimated from unsupported 210Pb controlled by 137Cs. Siliceous microalgae examined in each cm of two sediment cores demonstrated significant changes in the ecological structure of the assemblages that reflected changes in sedimentation conditions. During the years 1860–1910 the sediments accumulated under the great influence of river runoff. For about the next 50 years the number of freshwater species and marine benthic diatoms in sediments sharply declined, which is probably connected with the weakening of the effects of river runoff due to deforestation. Since the early 1960s the sedimentation conditions in the Amur Bay changed significantly. Marine planktonic diatoms and silicoflagellates began to prevail in sediments and this reflects increasing microphytoplankton productivity. One consequence of this was the formation of seasonal bottom hypoxia in Amur Bay. The ecological structure of diatom and silicoflagellate assemblages indicates that the sea level began to rise since the early 1960s and this corresponds to the water and air temperature increase in the area for that period. The obtained data suggest that the environmental changes over the last 150 years in Armur Bay are associated with the weakening of river runoff due to deforestation, sea level rise caused by global warming, and the increase of siliceous microplankton productivity that resulted in the formation of seasonal bottom hypoxia.

  相似文献   
24.
Cabré  Anna  Marinov  Irina  Leung  Shirley 《Climate Dynamics》2015,45(5-6):1253-1280
Climate Dynamics - We analyze for the first time all 16 Coupled Model Intercomparison Project Phase 5 models with explicit marine ecological modules to identify the common mechanisms involved in...  相似文献   
25.
A set of smoothed temperature gradient profiles around overshooting layers at the solar convective zone bottom is considered. In classical local theories of convection the one point defined according to the Schwarzschild criterion is enough to describe a convective boundary. To get a sophisticated picture of the overshooting we use four points to compute the transition overshooting functions. Analyzing the transition gradient profiles we found that the overshooting convective flux may be either positive or negative. A negative overshooting flux appears in nonlocal convective theories and causes a steep temperature gradient profile. But we propose an evenly smoothed gradient which corresponds to a convective flux positive everywhere. To outline the effect of the temperature gradient on the solar oscillations the squared Brunt–Väisälä frequency N 2 is calculated. In local convective theories the N 2 profile shows the discontinuity of the first derivative at the convective boundary, while all smoothed profiles eliminate the break.  相似文献   
26.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   
27.
The authors have studied melt-fluid and fluid inclusions in quartz and fluorite of sideritic and ankerite-calcitic carbonatites of the Karasug ore field, as well as melt inclusions in apatite from granosyenites. The content of salt and fluid components in brine-melt inclusions was evaluated on the basis of the thermodynamic data, the calculations of volumes and densities of the solid phases, a solution of about 50% concentration, and the gas phase of the inclusions, as well as the results of the LA-ICP-MS analysis. The content of salt phases, the solution, and the gas phase amounted to 85–70, 10–25, and about 5% of the inclusion substance, respectively. The total percentage of salt and fluid components (H2O and CO2) amounted to 90–80 and 10–20 wt %, respectively. The fraction of a carbonate constituent in the inclusions was as high as 45–50% and over in ankerite-calcite carbonatites and about 15 wt % in sideritic carbonatites. The 117.2 ± 1.3 Ma age of these carbonatites by 40Ar/39Ar, along with other datings for this area, shows that their formation was associated with a manifestation of the Cretaceous alkaline-mafic magmatism (117–120 Ma). The presented model of the formation of carbonatites is in agreement with the sequence of the development of magmatic processes and mineralization in this area. The model is also confirmed by the results of the studies of melt and fluid inclusions in minerals.  相似文献   
28.
29.
Regional climate change patterns identified by cluster analysis   总被引:1,自引:0,他引:1  
Climate change caused by anthropogenic greenhouse emissions leads to impacts on a global and a regional scale. A quantitative picture of the projected changes on a regional scale can help to decide on appropriate mitigation and adaptation measures. In the past, regional climate change results have often been presented on rectangular areas. But climate is not bound to a rectangular shape and each climate variable shows a distinct pattern of change. Therefore, the regions over which the simulated climate change results are aggregated should be based on the variable(s) of interest, on current mean climate as well as on the projected future changes. A cluster analysis algorithm is used here to define regions encompassing a similar mean climate and similar projected changes. The number and the size of the regions depend on the variable(s) of interest, the local climate pattern and on the uncertainty introduced by model disagreement. The new regions defined by the cluster analysis algorithm include information about regional climatic features which can be of a rather small scale. Comparing the regions used so far for large scale regional climate change studies and the new regions it can be shown that the spacial uncertainty of the projected changes of different climate variables is reduced significantly, i.e. both the mean climate and the expected changes are more consistent within one region and therefore more representative for local impacts.  相似文献   
30.
This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号