首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   3篇
测绘学   2篇
大气科学   6篇
地球物理   23篇
地质学   25篇
海洋学   9篇
天文学   3篇
自然地理   4篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   1篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1992年   1篇
  1983年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
11.
This work presents models of the vertical distribution and flux of phytoplankton aggregates, including changes with time in the distribution of aggregate sizes and sinking speeds. The distribution of sizes is described by two parameters, the mass and number of aggregates, which greatly reduces the computational cost of the models. Simple experiments demonstrate the effects of aggregation on the timing and depth distribution of primary production and export. A more detailed ecological model is applied to sites in the Arabian Sea; it demonstrates that aggregation can be important for deep sedimentation even when its effect on surface concentrations is small, and it presents the difference in timing between settlement of aggregates and fecal pellets.  相似文献   
12.
Several genes normally induced by estradiol (E(2)) in female fish, those for vitellogenins (VTGs) and zona radiata proteins (ZRPs), are also inducible in males exposed to estrogenic chemicals. Male sheepshead minnows (SHM) were exposed to both E(2) and para-nonylphenol (NP), at several doses and times to determine a dose-response. Quantitative real time PCR was used to measure mRNA for VTG1, VTG2, ZRP2 and ZRP3. Both E(2) and NP elicited a dose-response increase in all of the mRNAs tested. Exposure to both chemicals resulted in VTG2 expression at about a 10-fold lower level than VTG1, and ZRP2 expression at a lower level than ZRP3.  相似文献   
13.
14.
15.
Cantilever torque magnetometry is utilized widely in physics and material science for the determination of magnetic properties of thin films and semiconductors. Here, we report on its first application in rock magnetism, namely the determination of K1 and K2 of single crystal octahedra of natural magnetite. The design of cantilever magnetometers allows optimization for the specific research question at hand. For the present study, a cantilever magnetometer was used that enables measurement of samples with a volume up to 64 mm3. It can be inserted into an electromagnet with a maximum field of 2 T. The cantilever spring is suitable for torque values ranging from 7.5 × 10− 7 N·m to 5 × 10− 6 N·m. The torque is detected capacitively; the measured capacitance is converted into torque by using a calibrated feedback coil. The magnetometer allows in-situ rotation of the sample in both directions and is, therefore, also suitable to analyze rotational hysteresis effects.The evaluation of the magnetite anisotropy constants involved Fourier analysis of the torque signal on the magnetite crystals' (001) and (110) planes. The absolute anisotropy constant has been computed using the extrapolation-to-infinite-field method. The value of K1 at room temperature is determined at − 1.28 × 104 [J m− 3] (± 0.13, i.e. 10%) and that of K2 at − 2.8 × 103 [J m− 3] (± 0.1, i.e. 2%). These values concur with earlier determinations that could not provide an instrumental error, in contrast with this work.The cantilever magnetometer performs four times faster than other torque magnetometers used for rock magnetic studies. This makes the instrument also suitable for magnetic fabric analysis.  相似文献   
16.
The increasing frequency and/or severity of extreme climate events are becoming increasingly apparent over multi‐decadal timescales at the global scale, albeit with relatively low scientific confidence. At the regional scale, scientific confidence in the future trends of extreme event likelihood is stronger, although the trends are spatially variable. Confidence in these extreme climate risks is muddied by the confounding effects of internal landscape system dynamics and external forcing factors such as changes in land use and river and coastal engineering. Geomorphology is a critical discipline in disentangling climate change impacts from other controlling factors, thereby contributing to debates over societal adaptation to extreme events. We review four main geomorphic contributions to flood and storm science. First, we show how palaeogeomorphological and current process studies can extend the historical flood record while also unraveling the complex interactions between internal geomorphic dynamics, human impacts and changes in climate regimes. A key outcome will be improved quantification of flood probabilities and the hazard dimension of flood risk. Second, we present evidence showing how antecedent geomorphological and climate parameters can alter the risk and magnitude of landscape change caused by extreme events. Third, we show that geomorphic processes can both mediate and increase the geomorphological impacts of extreme events, influencing societal risk. Fourthly, we show the potential of managing flood and storm risk through the geomorphic system, both near‐term (next 50 years) and longer‐term. We recommend that key methods of managing flooding and erosion will be more effective if risk assessments include palaeodata, if geomorphological science is used to underpin nature‐based management approaches, and if land‐use management addresses changes in geomorphic process regimes that extreme events can trigger. We argue that adopting geomorphologically‐grounded adaptation strategies will enable society to develop more resilient, less vulnerable socio‐geomorphological systems fit for an age of climate extremes. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
17.
The three-dimensional configuration of sedimentary landforms in intertidal environments represents a major control on regional hydrodynamics. It modulates the location and magnitude of forces exerted by tidal currents and waves on the landform itself and on engineered infrastructure such as sea walls or coastal defences. Furthermore, the effect is reflexive, with the landforms representing an integrated, long-term response to the forces exerted on them. There is a strong reciprocal linkage between form and process (morphodynamics) in the coastal zone which is significantly lagged and poorly understood in the case of cohesive, vegetated sediments in the intertidal zone. A method is presented that links the geometric properties of the tidal flat–salt marsh interface to the history and potential future evolution of that interface. A novel quantitative classification scheme that is capable of separating marsh margins based on their functional form is developed and is applied to demonstrate that relationships exist between landform configuration and morphological evolution across a regional extent. This provides evidence of a spatially variable balance between self-organized and external controls on morphodynamic evolution and the first quantitative basis for a quick assessment procedure for likely future dynamism. © 2019 John Wiley & Sons, Ltd.  相似文献   
18.
19.
California mountain streams provide critical water resources for human supplies and aquatic ecosystems, and have been affected by climatic changes to varying degrees, often within close proximity. The objective of this study is to examine stream flow timing changes and their climatic drivers through 2009, identify sub-regional patterns in response and sensitivity, and explore whether the differences in the sensitivity of a stream to climatic changes can be partially explained through the physical characteristics of a watershed. To this end, changes in streamflow timing for each watershed were assessed through several runoff timing measures, and overall sensitivity to historic climatic changes through a composite sensitivity index. Elevation, aspect, slope, geology, and landcover distributions, as well as climate information were assembled for each watershed; and were analyzed in conjunction with the sensitivity index. Results showed that the basins most sensitive to climatic changes are on the western Sierra Nevada slopes, while eastern and southern Sierra Nevada, as well as Klamath mountain watersheds exhibit little or no response to climatic shifts to date. Basin sensitivity was not found to be connected to any individual physical watershed characteristic other than elevation. However, it is suggested that basin-to-basin differences in sensitivity, observed in spite of regional-scale warming and similar watershed elevations, can be explained by differences in elevation ranges and combinations of physical watershed characteristics. Results about stream differences in climate sensitivity could aid in prioritizing stream preservation efforts.  相似文献   
20.
The Californian Mono Lake Basin (MLB) is a fragile ecosystem, for which a 1983 ruling carefully balanced water diversions with ecological needs without the consideration of global climate change. The hydroclimatologic response to the impact of projected climatic changes in the MLB has not been comprehensively assessed and is the focus of this study. Downscaled temperature and precipitation projections from 16 Global Climate Models (GCMs), using two emission scenarios (B1 and A2), were used to drive a calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to assess the effects on streamflow on the two significant inflows to the MLB, Lee Vining and Rush Creeks. For the MLB, the GCM ensemble output suggests significant increases in annual temperature, averaging 2.5 and 4.1 °C for the B1 and A2 emission scenarios, respectively, with concurrent small (1–3 %) decreases in annual precipitation by the end of the century. Annual total evapotranspiration is projected to increase by 10 mm by the end of the century for both emission scenarios. SWAT modeling results suggest a significant hydrologic response in the MLB by the end of the century that includes a) decreases in annual streamflow by 15 % compared to historical conditions b) an advance of the peak snowmelt runoff to 1 month earlier (June to May), c) a decreased (10–15 %) occurrence of ‘wet’ hydrologic years, and d) and more frequent (7–22 %) drought conditions. Ecosystem health and water diversions may be affected by reduced water availability in the MLB by the end of the century.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号