首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   12篇
测绘学   11篇
大气科学   17篇
地球物理   85篇
地质学   102篇
海洋学   19篇
天文学   17篇
自然地理   46篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   11篇
  2015年   12篇
  2014年   13篇
  2013年   13篇
  2012年   5篇
  2011年   15篇
  2010年   13篇
  2009年   16篇
  2008年   16篇
  2007年   22篇
  2006年   23篇
  2005年   14篇
  2004年   10篇
  2003年   6篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1984年   5篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有297条查询结果,搜索用时 15 毫秒
121.
In this paper, we study two different model reduction strategies for solving problems involving single phase flow in a porous medium containing faults or fractures whose location and properties are known. These faults are represented as interfaces of dimension N ? 1 immersed in an N dimensional domain. Both approaches can handle various configurations of position and permeability of the faults, and one can handle different fracture permeabilities on the two inner sides of the fracture. For the numerical discretization, we use the hybrid finite volume scheme as it is known to be well suited to simulating subsurface flow. Some results, which may be of use in the implementation of the proposed methods in industrial codes, are demonstrated.  相似文献   
122.
The morpho-sedimentary evolution of the Choisille floodplain (lowland river, catchment: 288 km2), a tributary of the River Loire in the south-western Parisian Basin, was studied through 61 core drillings along eight transects and a geophysical survey located in four stretches of the river: stretches A and B correspond to two sub-catchments, and stretches C and D are in the main valley. Sixty 14C and four OSL datings were obtained, and sediments were analysed on seven reference cores. Eight phases of evolution differing markedly from the evolution of more northern areas in the Parisian Basin and north-western Europe were identified from spatio-temporal distribution of nine lithological facies. The deepest incision phase (1) occurred during the first part of the Weichselian, followed by the deposition of a gravelly-sandy unit (phase 2) during the Middle Pleniglacial, which was deeply incised (phase 3), probably during the Bölling. From the Allerød up to the last third of the Boreal (phase 4), sedimentation was continuously dominated by peaty deposits, with no evidence of either increased hydraulic energy during the Younger Dryas, or of incision during the LateGlacial–Holocene transition. This trend seems to reflect the specificity of the south-western Parisian Basin climate from the Late Weichselian up to the end of the Boreal, due to the influence of the Atlantic Ocean, compared to more northern areas where the climate was more continental. The downstream incision trend during the last third of the Boreal up to the Subatlantic (phases 5 and 6) indicates a sharp increase in precipitation and vegetation cover; the lack of peaty sediments, widespread in north-western Europe, and also of precipitated carbonates frequent in the Parisian Basin, seems to be due to local physiographic characteristics. The main part of the sediment filling, which is principally silty and retrograde, began during the Subatlantic (phase 7 and 8) as a result of deforestation of the plateaux for crop farming. High human-induced sediment yield and storage concealed the possible impacts of climate change on fluvial dynamics: lithological facies change from phase 7 to 8 can only indicate the autogenic morphological evolution of the floodplain in accretion. The non-univocal upstream–downstream variation in the start of phase 7 shows that sediment yield varied in space and time in the catchment, particularly in relation to the agricultural potential of the different areas; this observation could be used to testify human-induced sedimentation in other catchments.  相似文献   
123.
Ice processes taking place in steep channels are sensitive to the thermal and hydrological regimes of upstream reaches and tributaries as well as to the local channel morphology. This work presents freezeup, mid‐winter, and breakup data from four channels of increasing order located in a cold temperate watershed during the winter 2010–2011. From headwater channels to the main drainage system, water temperature, ice coverage, and ice processes are reported and related to weather conditions and to channel characteristics. Headwater channels only formed ephemeral ice features, and their water temperature reached as much as 4 °C in mid‐winter. On the other hand, larger channels formed impressively large ice dams, some of them reaching 2 m in height. The development of a suspended ice cover partially insulated the channels; as a result, water temperatures remained above 0 °C even for air temperatures well below freezing. This work presents steep channels ice processes that have not been described in previous publications. The concept of a watershed cryologic continuum (WCC) is developed from the data collected at each channel order. This concept emphasizes the feedback loops that exist between morphology, hydrology, heat, and ice processes in a given watershed and can lead to a better understanding of ice processes taking place at any channel location within that watershed. The WCC can also contribute in improving our understanding of the impacts of climate change on the cryologic and thermal regimes of steep channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
124.
Alpine‐type orogens are interpreted to result from the collision of former rifted margins. As many present‐day rifted margins consist of hyper‐extended domains floored by thinned continental crust (<10 km) and/or exhumed mantle, this study explores the influence of rift inheritance on the architecture and final evolution of Alpine‐type orogens. We propose that rift‐related necking zones, separating weakly thinned 25‐ to 30‐km‐thick crust from hyper‐extended domains, may act as buttresses during the transition from subduction to collision. As a result, former necking zones may now be found at the boundary between a highly deformed and overthickened nappe stack, made of relics of hyper‐extended domains, and an external, weakly deformed fold‐and‐thrust belt, which largely escaped significant rift‐related crustal thinning and orogeny‐related thickening. Therefore, the role of rift inheritance is of critical importance and is largely underestimated in controlling the architecture and evolution of Alpine‐type orogens.  相似文献   
125.
In boreal forested wetlands, the observed increase in the water table level after clearcutting (watering‐up) is often a threat to sustained ecosystem productivity. Hydrologic recovery refers to the processes by which a water table progressively drops back to its initial level after the cut. In eastern Canada, drainage is used operationally after clearcutting wet sites in order to lower the water table level and accelerate hydrologic recovery. The objective of this study was to evaluate the duration of the watering‐up caused by timber harvesting and the extent to which drainage affected the water table recovery on five peatlands and three hydromorphic mineral sites located in the St. Lawrence Lowlands of Québec (Canada). The mixed wood stands studied are dominated by balsam fir (Abies balsamea (L.) Mill.), eastern white cedar (Thuja occidentalis L.), and red maple (Acer rubrum L). Results indicate that, 10 years after clearcutting, water table levels in undrained plots are still 5 to 7 cm higher than the pre‐cut levels. The slight recovery in water table level plateaued after the third year. Rainfall interception by vegetation was also monitored, and after 10 years had reached nearly 50% of the pre‐cut rate. The immediate water table drawdown following drainage mitigated watering‐up within 40 m of a ditch. The persistent watering‐up observed in this study should encourage using sylvicultural systems adapted to boreal forested wetlands in order to prevent productivity loss and stand conversion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
126.
Thermokarst ponds are widespread in arctic and subarctic regions, but little is known about their temporal evolution prior to human observations. This paper presents a pioneer biostratigraphic study conducted at a subarctic site with limnologically contrasted ponds located on the eastern shore of Hudson Bay, Canada. Fossil diatom and visible near infrared (VNIR) derivative spectral analyses were performed on short sediment cores, confirming the occurrence of three distinct stratigraphic facies as already inferred from an anterior sedimentological study: a lacustrine upper facies (UF) and a marine lower facies (LF), separated by an organic‐rich/peat transitional zone (TZ). Diatoms were almost absent from LF, but increased significantly in both TZ and UF. Identified diatom taxa were mainly benthic species (e.g. genera Fragilaria, Pinnularia), and their down‐core distribution appeared to be related to dissolved organic carbon (DOC) and possibly pH conditions. Diatom‐inferred DOC showed a decreasing trend towards the surface (potentially associated with an increase in pH), inverse to the general trend in this region, suggesting the action of other mechanisms on DOC, such as exhaustion of external inputs from limited catchments and the role of discontinuous peat layers (former surfaces of permafrost mounds) during the initial stages of pond formation. These bryophilous substrates in aerophilic habitats probably controlled diatom community composition. The combination of diatom and VNIR data revealed similar trends between (i) opal (amorphous silica) and diatom abundances; (ii) eukaryotic/prokaryotic algae ratio and anoxia or hypoxia in bottom waters; and (iii) limonite (iron oxide) and redox conditions in surface sediments. These findings indicate that diatom community changes and pond limnological evolution in the recent past were controlled mainly by autogenic processes (e.g. local vegetation/soil development, peat accumulation and erosion), rather than by allogenic forcing mechanisms (e.g. precipitation and temperature, geochemical leaching of the surrounding glaciomarine sediments).  相似文献   
127.
This study examines the lateral distribution of hydromorphy in the fine‐grained alluvial deposits of the Eocene Pondaung Formation, central Myanmar. Through detailed outcrop analysis and using a combined sedimentological and pedological approach, this study proposes a reconstruction of Pondaung overbank floodplain palaeoenvironments. The variations of hydromorphic features in the different overbank sub‐environments are then discussed and used to build a model of hydromorphic variability in alluvial deposits. Two main architectural associations with distinctive lithofacies and pedogenic features were identified, corresponding to different sub‐environments: heterolithic deposits and extensive mudstone successions. The heterolithic deposits display variegated fine‐grained lithofacies and contain poorly developed palaeosols with gley and vertic features, which are interpreted to reflect a seasonal wetlands landscape, developed in actively aggrading avulsion belts. Extensive mudstone successions with Vertisols that locally exhibit mukkara‐style pseudogley features are interpreted to represent a distal open‐forested environment. The palaeosols of both sub‐environments display dense local hydromorphic variations they are also characterized by a gradual shift from gley‐dominated to pseudogley‐dominated features with increasing distance from the avulsion belt. The clay‐dominated lithology of the floodplain parent material, which forms numerous subsurface permeability barriers, is shown to have acted as a fundamental control in limiting water‐table dynamics in coarse‐grained parts of the succession, thereby favouring hydromorphic variability. Palaeosol sequences of the Pondaung Formation contrast with the soil‐landscape associations described in other studies and provide an alternative model with which to account for the hydromorphic variability in poorly drained, alluvial soils. The model proposed as an outcome of this study demonstrates that hydromorphic variations can be dramatic in floodplains where permeability barriers are numerous. Further, the model stresses the importance of undertaking detailed lateral palaeosol analyses prior to making interpretations regarding hydromorphic variability.  相似文献   
128.
129.
The water and energy cycles are major elements of the Earth climate. These cycles are especially active in the intertropical belt where satellites provide the most suitable observational platform. The history of Earth observations of the water cycle and of the radiation budget viewed from space reveals that the fundamental questions from the early times are still relevant for today's research. The last 2 decades have seen a number of milestones regarding the documentation of rainfall, mesoscale convective systems (MCS), water vapour and radiation at the top of the atmosphere (TOA). Beyond dedicated missions that provided enhanced characterizations of some elements of the atmospheric water cycle and field campaigns that allowed the gathering of validation data, the advent of the long record of meteorological satellites lead to new questioning on the homogenisation of the data time series, etc. The use of this record to document the tropical climate brought new results of the distribution of humidity and reinforced the understanding of some robust features of the African monsoon. Challenges for the immediate future concerns the deepening of the understanding of the role of cloud systems in the monsoon circulation, the downscaling of the documentation of the water and energy cycle at the scale of these cloud systems, the research of better adequation between the users and the satellite estimate of rainfall and finally a much needed methodological effort to build exploitable time series for the estimation of climatic trends in the water and energy cycle in the Tropics. The required observations to address these challenges are rapidly presented with emphasis on the upcoming Megha-Tropiques (MT) mission.  相似文献   
130.
Chemical composition is a good tracer of the hydrodynamical processes that occur in stars as they often lead to mixing and particle transport. By comparing abundances predicted by models and those observed in stars we can infer some constraints on those mixing processes. As pulsations in the stars are often very sensitive to chemical composition, we can use asteroseismology to probe the internal chemical composition of stars where no direct observations are possible. In this paper I focus on main sequence stars Am, λ Bootis, and HgMn stars and discuss what we can learn of mixing processes in these stars from seismology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号