首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116863篇
  免费   2055篇
  国内免费   1651篇
测绘学   3678篇
大气科学   8946篇
地球物理   23581篇
地质学   42179篇
海洋学   9468篇
天文学   22753篇
综合类   2317篇
自然地理   7647篇
  2021年   678篇
  2020年   813篇
  2019年   868篇
  2018年   6096篇
  2017年   5344篇
  2016年   4601篇
  2015年   1652篇
  2014年   2237篇
  2013年   4747篇
  2012年   3203篇
  2011年   5836篇
  2010年   4877篇
  2009年   6329篇
  2008年   5453篇
  2007年   5694篇
  2006年   3553篇
  2005年   3174篇
  2004年   3408篇
  2003年   3231篇
  2002年   2975篇
  2001年   2476篇
  2000年   2411篇
  1999年   2020篇
  1998年   2038篇
  1997年   1998篇
  1996年   1736篇
  1995年   1645篇
  1994年   1493篇
  1993年   1362篇
  1992年   1298篇
  1991年   1152篇
  1990年   1352篇
  1989年   1193篇
  1988年   1099篇
  1987年   1294篇
  1986年   1179篇
  1985年   1436篇
  1984年   1624篇
  1983年   1522篇
  1982年   1404篇
  1981年   1410篇
  1980年   1185篇
  1979年   1150篇
  1978年   1165篇
  1977年   1099篇
  1976年   1014篇
  1975年   963篇
  1974年   962篇
  1973年   974篇
  1972年   600篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
S.J Weidenschilling 《Icarus》2003,165(2):438-442
For standard cosmic abundances of heavy elements, a layer of small particles in the central plane of the solar nebula cannot attain the critical density for gravitational instability. Youdin and Shu (2002, Astrophys. J. 580, 494-505) suggest that the local surface density of solids can be enhanced by radial migration of particles due to gas drag. However, they consider only motions of individual particles. Collective motion due to turbulent stress on the particle layer acts to inhibit such enhancement and may prevent gravitational instability.  相似文献   
93.
94.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
95.
Photographic spectra of SN1987A in the LMC have been obtained from 1987 February 25 to 1988 June 30. Microdensitometer tracings of these have been reduced to intensity and corrections for instrumental response have been applied to the spectra. This paper presents these data in an atlas format, discusses the reduction procedures in detail, and presents radial velocity measurements of selected lines in the spectra  相似文献   
96.
An introduction to Maslov's asymptotic method   总被引:3,自引:0,他引:3  
Summary. Familiar concepts such as asymptotic ray theory and geometrical spreading are now recognized as an asymptotic form of a more general asymptotic solution to the non-separable wave equation. In seismology, the name Maslov asymptotic theory has been attached to this solution. In its simplest form, it may be thought of as a justification of disc-ray theory and it can be reduced to the WKBJ seismogram. It is a uniformly valid asymptotic solution, though. The method involves properties of the wavefronts and ray paths of the wave equation which have been established for over a century. The integral operators which build on these properties have been investigated only comparatively recently. These operators are introduced very simply by appealing to the asymptotic Fourier transform of Ziolkowski & Deschamps. This leads quite naturally to the result that phase functions in different domains of the spatial Fourier transform are related by a Legendre transformation. The amplitude transformation can also be inferred by this method. Liouville's theorem (the incompressibility of a phase space of position and slowness) ensures that it is always possible to obtain a uniformly asymptotic solution. This theorem can be derived by methods familiar to seismologists and which do not rely on the traditional formalism of classical mechanics. It can also be derived from the sympletic property of the equations of geometrical spreading and canonical transformations in general. The symplectic property plays a central role in the theory of high-frequency beams in inhomogeneous media.  相似文献   
97.
Approach to Mountain Hazards in Tibet, China   总被引:1,自引:1,他引:0  
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km^2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.  相似文献   
98.
Extraterrestrial geography has become a reality, as we move from Earth's moon to the planets. A broad-scale regional physiography is being established on twenty planets and satellites through remote sensing techniques. Spacecraft images yield most of the information on Solar System landscapes. Topographic measurements are extracted by monoscopic image-processing, stereophotogrammetry, and radar analysis. Invisible parts of the spectrum furnish non-topographic data.  相似文献   
99.
Poorly-graphitised carbon particles are formed during manufacture of sample substrates (holey carbon films) for Analytical Electron Microscopy studies of small particles. The particles form during heat treatment of cellulose acetobutyrate at about 975 °C and 1050 °C. In AEM studies of fine-grained carbonaceous extraterrestrial materials, these particles are easily recognised.  相似文献   
100.
In the upper Chesapeake Bay (Maryland, U.S.A.) field surveys were conducted at 18 multiple longshore sand bar sites. The multiple bar systems were found in water depths less than approximately 2 m (mean sea level), and exhibited mild bottom slopes of 0·0052 or less. The number of bars composing each system ranged from four to 17 and the spacing between the crests typically increased in the offshore direction, ranging from 12 to 70 m. Bar height also typically increased with distance offshore and ranged from 0·03 to 0·61 m. A grain size analysis of crest and trough sediment did not reveal any significant differences and the sediment was categorized as ‘fine sand’. A review of the literature data indicated that the Chesapeake Bay multiple bars possessed similar characteristics to those found in Gelding Bay (Baltic Sea); similarities in fetch, wave height and tidal range between the two bays may account for this finding. The surf-scaling parameter indicated that the multiple bar systems were extremely dissipative with regard to wave energy, and wave height appeared to be an important factor in controlling bar spacing and bar height. A multiple wave break point hypothesis was discussed as a possible mechanism for the formation of Chesapeake Bay multiple longshore bars, and limited observational evidence appeared to support such a mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号