首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   11篇
  国内免费   24篇
测绘学   1篇
大气科学   24篇
地球物理   64篇
地质学   240篇
海洋学   18篇
天文学   9篇
自然地理   45篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   10篇
  2013年   30篇
  2012年   9篇
  2011年   8篇
  2010年   13篇
  2009年   17篇
  2008年   10篇
  2007年   14篇
  2006年   5篇
  2005年   20篇
  2004年   6篇
  2003年   9篇
  2002年   7篇
  2001年   7篇
  2000年   4篇
  1999年   10篇
  1998年   6篇
  1997年   18篇
  1996年   27篇
  1995年   9篇
  1994年   9篇
  1993年   11篇
  1992年   7篇
  1991年   8篇
  1990年   12篇
  1989年   8篇
  1988年   7篇
  1987年   11篇
  1986年   3篇
  1985年   12篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1974年   2篇
  1972年   2篇
  1970年   3篇
  1968年   3篇
  1967年   3篇
  1965年   2篇
  1962年   1篇
  1959年   1篇
  1928年   1篇
排序方式: 共有401条查询结果,搜索用时 296 毫秒
41.
Spherular modern dolomite from the Coorong area, South Australia   总被引:1,自引:0,他引:1  
Scanning electron micrographs show that the youngest and apparently least altered of the Coorong dolomite is in the form of spherular bodies about 0.2–1.0 μm in size which themselves are composed of spherules about 100 nm in diameter. Older and more lithified sediments show sharply defined dolomite crystals suggesting an origin as primary dolomite spherules followed by aggregation and diagenetic alteration to well crystallized dolomites.  相似文献   
42.
The proposal for Quaternary stratigraphy of Norden published 1974 by Mangerud, Andersen, Berglund & Donner was discussed at a Nordie meeting 1978. On the basis of this discussion some recommendations are proposed here which deviate slightly from the 1974 proposal: (1) the term Flandrian should not be used in Norden until it is properly defined in the type area, (2) the Middle/Late Weichselian boundary should provisionally be defined as 25,000 14C years B. P. In addition it was stated that there is an urgent need for complete subdivision of the Weichselian into a continuous chronozone sequence.  相似文献   
43.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   
44.
From the Sellevollmyra bog at Andøya, northern Norway, a 440‐cm long peat core covering the last c. 7000 calendar years was examined for humification, loss‐on‐ignition, microfossils, macrofossils and tephra. The age model was based on a Bayesian wiggle‐match of 35 14C dates and two historically anchored tephra layers. Based on changes in lithology and biostratigraphical climate proxies, several climatic changes were identified (periods of the most fundamental changes in italics): 6410–6380, 6230–6050, 5730–5640, 5470–5430, 5340–5310, 5270–5100, 4790–4710, 4890–4820, 4380–4320, 4220–4120, 4000–3810, 3610–3580, 3370–3340 (regionally 2850–2750; in Sellevollmyra a hiatus between 2960–2520), 2330–2220, 1950, 1530–1450, 1150–840, 730? and c. 600? cal. yr BP. Most of these climate changes are known from other investigations of different palaeoclimate proxies in northern and middle Europe. Some volcanic eruptions seemingly coincide with vegetation changes recorded in the peat, e.g. about 5760 cal. yr BP; however, the known climatic deterioration at the time of the Hekla‐4 tephra layer started some decades before the eruption event.  相似文献   
45.
A new occurrence of kyanite eclogite in the Pirin Mountains of southwestern Bulgaria within the rocks belonging to the Obidim Unit of the Rhodope Metamorphic Complex is presented. This eclogite provides important information about the peak–pressure conditions despite strong thermal overprint at low pressure. Textural relationships, phase equilibrium modelling and conventional geothermobarometry were used to constrain the metamorphic evolution. Garnet porphyroblasts with inclusions of omphacite (up to 43 mol.% Jd), phengite (up to 3.5 Si p.f.u.), kyanite, polycrystalline quartz, pargasitic amphibole, zoisite and rutile in the Mg‐rich cores (XMg = 0.44–0.46) record a prograde increase in P–T conditions from ~2.5 GPa and 650 °C to ~3 GPa and 700–750 °C. Maximum pressure values fall within the stability field of coesite. During exhumation, the peak–pressure assemblage garnet + omphacite + phengite + kyanite was variably overprinted by a lower pressure one forming symplectitic textures, such as diopside + plagioclase after omphacite and biotite + plagioclase after phengite. The development of spinel (XMg = 0.4–0.45) + corundum + anorthite assemblage in the kyanite‐bearing domains at ~1.1 GPa and 800–850 °C suggests a thermal overprint in the high‐pressure granulite facies stability field. This thermal event was followed by cooling at ~0.8 GPa under amphibolite facies conditions; retrograde kelyphite texture involving plagioclase and amphibole was developed around garnet. Our results add to the already existing evidence for ultra high pressure (UHP) metamorphism in the Upper Allochthon of the Rhodope Metamorphic Complex as in the Kimi Unit and show that it is more widespread than previously known. Published age data and field structural relations suggest that the Obidim Unit represents Variscan continental crust involved into the Alpine nappe edifice of the Rhodopes and that eclogite facies metamorphism was Palaeozoic, in contrast to the Kimi Unit where age determinations suggest a Jurassic or Cretaceous age for UHP metamorphism. This implies that UHP metamorphism in the Upper Allochthon of the Rhodopes may have occurred twice, during Alpine and pre‐Alpine orogenic events, and that two independent HP/UHP provinces of different age overlap in this area.  相似文献   
46.
47.
Abstract— –Meridiani Planum is the first iron meteorite found on Mars. It was discovered in 2005 by the Mars Exploration Rover Opportunity (MER‐B). Mössbauer spectra (MS) of the unbrushed and brushed meteorite species were acquired in 10 degrees temperature windows in the range of 210–260 K. Earlier examinations of these MS have led to the conclusion that the meteorite, which contains ~~7 wt% Ni, belongs to the IAB meteorite group. Here, making use of a recently developed calibration/folding procedure for MER MS, we report the results of the MS analyses for the single temperature windows m5 (210–220 K), m6 (220–230 K), m7 (230–240 K), and m89 (240–260 K). All spectra consist of a sextet and a ferric doublet. The hyperfine field of the sextet, extrapolated to room temperature, is ~~34.5 T, which is, based on Mössbauer studies of meteorites found on Earth, indeed consistent with the presence of kamacite. The fractional spectral area of the sextet is ~~0.96 of the total spectrum. The ferric doublet has an average quadrupole splitting of 0.70 mm/s and is not diagnostic of any specific Fe mineral.  相似文献   
48.
The sea-floor morphology of two pronounced across-fjord bedrock thresholds located at the mouths of Ofotfjorden and Tysfjorden, northern Norway, has been analysed based on swath bathymetry and seismic data. The Younger Dryas ice front was located here during the recession of one of the large palaeo-ice streams of the Fennoscandian Ice Sheet. The thresholds are several kilometres long and wide, rising to several hundred metres above the adjacent sea floor, and the slopes are steep, up to 25°. The Ofotfjorden threshold is draped by acoustically discontinuous to chaotic sediments partly infilling the bedrock relief. A pattern of well-developed, subglacial bedforms (e.g. crag-and-tail formations, drumlins and glacial lineations) on top of both thresholds suggests fast-flowing ice. A series of smaller transverse ridges is identified on both thresholds and probably records ice-front oscillations during the final deglaciation. The distal parts of the sediments have been remobilized by slides that occurred after glacial retreat from the thresholds. Earthquake activity due to the isostatic rebound following ice retreat from this area was the most likely triggering mechanism for the slides. The location of the ice front on a prominent bedrock threshold indicates that the basin configuration was important in locating the maximum position of the climatically induced re-advance, i.e. a topographic control on the maximum Younger Dryas position in the Ofotfjorden and Tysfjorden area is suggested.  相似文献   
49.
A number of magnetic parameters have been measured on samples from a master sequence in Lake Adran, eastern Sweden. Based on the results, frequency dependent magnetic susceptibility, high isothermal rem-anence magnetization and different magnetic ratios have been calculated. The results from the master sequence have also been compared with magnetically analysed soil samples from the lake catchment. The results of the magnetic analyses show that the sediments in Lake Ådran originate from two sources, one regional and one local. The different sources can be related to water level changes during the Ancylus and Litorina stages. Sediments originating from the regional source are characterized by high ferrimagnetic to antiferromagnetic ratios (high S-ratios) and are assumed to have been deposited when the water level was well above the threshold. Sediments derived from the catchment, having lower S-ratios, are assumed to have been deposited when the basin was cut off from the regional water circulation. On the basis of the magnetic results, combined with pollen and diatom analyses, tentative water level changes for the Lake Adran basin are compiled.  相似文献   
50.
The controlling parameters of early marine carbonate cementation in shoal water and hemipelagic to pelagic domains are well‐studied. In contrast, the mechanisms driving the precipitation of early marine carbonate cements at deeper slope settings have received less attention, despite the fact that considerable volumes of early marine cement are present at recent and fossil carbonate slopes in water depths of several hundreds of metres. In order to better understand the controlling factors of pervasive early marine cementation at greater water depths, marine carbonate cements observed along time‐parallel platform to basin transects of two intact Pennsylvanian carbonate slopes are compared with those present in the slope deposits of the Permian Capitan Reef and Neogene Mururoa Atoll. In all four settings, significant amounts of marine cements occlude primary pore spaces downslope into thermoclinal water depths, i.e. in a bathymetric range between some tens and several hundreds of metres. Radial, radiaxial and fascicular optic fibrous calcites, and radiaxial prismatic calcites are associated with re‐deposited facies, boundstones and rudstones. Botryoidal (formerly) aragonitic precipitates are common in microbially induced limestones. From these case studies, it is tentatively concluded that sea water circulation in an extensive, near‐sea floor pore system is a first‐order control on carbonate ion supply and marine cementation. Coastal upwelling and internal or tidal currents are the most probable mechanisms driving pore water circulation at these depths. Carbonate cements precipitated under conditions of normal to elevated alkalinity, locally elevated nutrient levels and variable sea water temperatures. The implications of these findings and suggestions for future work are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号