首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地质学   13篇
  2006年   1篇
  2004年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1993年   1篇
  1989年   2篇
  1984年   1篇
  1974年   1篇
排序方式: 共有13条查询结果,搜索用时 250 毫秒
11.
Metasomatic mineral-bearing and/or trace element-enriched ultramaficassemblages have been reported from very few Alpine-type massifs.The small ultramafic body from Caussou (Ari?ge, northeasternPyrenees) compared with other north Pyrenean ultramafic complexesshows distinctive features which are similar to those of modallymetasomatized mantle xenoliths found in alkali basalts. It ismainly composed of clinopyroxene-rich spinel lherzolites (cpx/opxratios 1), with subordinate titanian pargasite-rich peridotites,both greatly depleted in orthopyroxene. Moreover the Caussouperidotites differ from other Ari?ge peridotites in the presenceof ilmenite, the abundance of sulfide inclusions in pyroxenesand amphiboles, higher Al, Ca, Na, K, Ti, and lower Mg contents,and enrichment in incompatible trace elements (ITE). Such mineralogicaland geochemical features are interpreted as resulting from modalmetasomatism produced by influxes of silicate melt into theperidotites. At Caussou, the metasomatic assemblage comprisesTi-pargasite+Ti-bearing clinopyr oxene+ilmenite+Ti-phlogopite+sulphide+fluid,suggesting that K, Ti, Na, ITE (including S, H2O CO2 and possiblyFe and Ca, were introduced by the metasomatizing agent. Thismetasomatism was probably imposed on an ultramafic associationdominated by LREE-depleted peridotites similar to the northPyrenean spinel lherzolites. These features indicate that, underupper lithospheric mantle conditions, a mafic melt locally infiltratedlherzolites by a grain-boundary percolation process and reactedwith the original mineral assemblage. The infiltration of alkali-basalticliquids into spinel peridotite led to: (1) partial dissolutionof orthopyroxene and, locally, spinel; (2) crystallization ofclinopyroxene directly from introduced melts; and (3) re-crystallization/equilibrationof pre-existing clinopyroxene with these magmatic liquids. Inthe last stage of the metasomatism, segregation of more fractionatedsilicate liquids, coexisting with a (CO2+H2O) fluid phase, mayhave been responsible for the crystallization of titanian pargasite,possibly by means of hydro-fracturing mechanism. The pervasive modal metasomatism at Caussou was contemporaneouswith the segregation of amphibole-bearing dykes in the Lherz-Freychin?debodies (northeast Pyrenees) (101–103 Ma). They representtwo manifestations of the same magmatic event in the lithosphericmantle, probably related the Middle Cretaceous alkaline magmatisrnof the Pyrenees.  相似文献   
12.
The Quérigut mafic–felsic rock association comprisestwo main magma series. The first is felsic comprising a granodiorite–tonalite,a monzogranite and a biotite granite. The second is intermediateto ultramafic, forming small diorite and gabbro intrusions associatedwith hornblendites and olivine hornblendites. A U–Pb zirconage of 307 ± 2 Ma was obtained from the granodiorite–tonalites.Contact metamorphic minerals in the thermal aureole providea maximum emplacement pressure of between 260 and 270 MPa. Petrographiccharacteristics of the mafic and ultramafic rocks suggest crystallizationat <300 MPa, demonstrating that mantle-derived magmas ascendedto shallow levels in the Pyrenean crust during Variscan times.The ultramafic rocks are the most isotopically primitive components,with textural and geochemical features of cumulates from hydrousbasaltic magmas. None of the mafic to ultramafic rocks havedepleted mantle isotope signatures, indicating crustal contaminationor derivation from enriched mantle. Origins for the dioritesinclude accumulation from granodiorite–tonalite magma,derivatives from mafic magmas, or hybrids. The granitic rockswere formed from broadly Proterozoic meta-igneous crustal protoliths.The isotopic signatures, mineralogy and geochemistry of thegranodiorite–tonalites and monzogranites suggest crystallizationfrom different magmas with similar time-integrated Rb/Sr andSm/Nd isotope ratios, or that the granodiorite–tonalitesare cumulates from a granodioritic to monzogranitic parent.The biotite granite differs from the other felsic rocks, representinga separate magma batch. Ages for Quérigut and other Pyreneangranitoids show that post-collisional wrenching in this partof the Variscides was under way by 310 Ma. KEY WORDS: Variscan orogeny; Pyrenees; Quérigut complex; epizonal magmatism; post-thickening; mafic–felsic association  相似文献   
13.
We report the results of a geochemical study of the Jijal andSarangar complexes, which constitute the lower crust of theMesozoic Kohistan paleo-island arc (Northern Pakistan). TheJijal complex is composed of basal peridotites topped by a gabbroicsection made up of mafic garnet granulite with minor lensesof garnet hornblendite and granite, grading up-section to hornblendegabbronorite. The Sarangar complex is composed of metagabbro.The Sarangar gabbro and Jijal hornblende gabbronorite have melt-like,light rare earth element (LREE)-enriched REE patterns similarto those of island arc basalts. Together with the Jijal garnetgranulite, they define negative covariations of LaN, YbN and(La/Sm)N with Eu* [Eu* = 2 x EuN/(SmN + GdN), where N indicateschondrite normalized], and positive covariations of (Yb/Gd)Nwith Eu*. REE modeling indicates that these covariations cannotbe accounted for by high-pressure crystal fractionation of hydrousprimitive or derivative andesites. They are consistent withformation of the garnet granulites as plagioclase–garnetassemblages with variable trapped melt fractions via eitherhigh-pressure crystallization of primitive island arc basaltsor dehydration-melting of hornblende gabbronorite, providedthat the amount of segregated or restitic garnet was low (<5wt %). Field, petrographic, geochemical and experimental evidenceis more consistent with formation of the Jijal garnet granuliteby dehydration-melting of Jijal hornblende gabbronorite. Similarly,the Jijal garnet-bearing hornblendite lenses were probably generatedby coeval dehydration-melting of hornblendites. Melting modelsand geochronological data point to intrusive leucogranites inthe overlying metaplutonic complex as the melts generated bydehydration-melting of the plutonic protoliths of the Jijalgarnet-bearing restites. Consistent with the metamorphic evolutionof the Kohistan lower arc crust, dehydration-melting occurredat the mature stage of this island arc when shallower hornblende-bearingplutonic rocks were buried to depths exceeding 25–30 kmand heated to temperatures above c. 900°C. Available experimentaldata on dehydration-melting of amphibolitic sources imply thatthickening of oceanic arcs to depths >30 km (equivalent toc. 1·0 GPa), together with the hot geotherms now postulatedfor lower island arc crust, should cause dehydration-meltingof amphibole-bearing plutonic rocks generating dense garnetgranulitic roots in island arcs. Dehydration-melting of hornblende-bearingplutonic rocks may, hence, be a common intracrustal chemicaland physical differentiation process in island arcs and a naturalconsequence of their maturation, leading to the addition ofgranitic partial melts to the middle–upper arc crust andformation of dense, unstable garnet granulite roots in the lowerarc crust. Addition of LREE-enriched granitic melts producedby this process to the middle–upper island arc crust maydrive its basaltic composition toward that of andesite, affordinga plausible solution to the ‘arc paradox’ of formationof andesitic continental-like crust in island arc settings. KEY WORDS: island arc crust; Kohistan complex; Jijal complex; amphibole dehydration-melting; garnet granulite; continental crustal growth  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号