首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   9篇
  国内免费   8篇
测绘学   30篇
大气科学   14篇
地球物理   54篇
地质学   63篇
海洋学   10篇
天文学   9篇
综合类   8篇
自然地理   17篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   8篇
  2011年   6篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   11篇
  2006年   5篇
  2005年   14篇
  2004年   1篇
  2003年   9篇
  2002年   7篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   10篇
  1994年   9篇
  1993年   22篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   11篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
131.
132.
Toxicity Identification Evaluations (TIEs) can be used to determine the specific toxicant(s), including ammonia, causing toxicity observed in marine sediments. Two primary TIE manipulations are available for characterizing and identifying ammonia in marine sediments: Ulva lactuca addition and zeolite addition. In this study, we compared the efficacy of these methods to (1) remove NH(x) and NH(3) from overlying and interstitial waters and (2) reduce toxicity to the amphipod Ampelisca abdita and mysid Americamysis bahia using both spiked and environmentally contaminated sediments. The utility of aeration for removing NH(x) and NH(3) during a marine sediment TIE was also evaluated preliminarily. In general, the U. lactuca and zeolite addition methods performed similarly well at removing spiked NH(x) and NH(3) from overlying and interstitial waters compared to an unmanipulated sediment. Toxicity to the amphipod was reduced approximately the same by both methods. However, toxicity to the mysid was most effectively reduced by the U. lactuca addition indicating this method functions best with epibenthic species exposed to ammonia in the water column. Aeration removed NH(x) and NH(3) from seawater when the pH was adjusted to 10; however, very little ammonia was removed at ambient pHs ( approximately 8.0). This comparison demonstrates both U. lactuca and zeolite addition methods are effective TIE tools for reducing the concentrations and toxicity of ammonia in whole sediment toxicity tests.  相似文献   
133.
134.
Jones NL  Walker JR  Carle SF 《Ground water》2005,43(2):285-289
This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has some advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upward sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids and/or grids with nonuniform cell thicknesses.  相似文献   
135.
Microbial respiration rates were determined through a 3.2 m thick, sandy unsaturated zone in a 2.4 m diameter x 4.6 m high mesocosm. The mesocosm was maintained under near constant temperature (18 degrees to 23 degrees C) and reached steady moisture content conditions after several hundred days. Soil-gas CO2 concentrations in the mesocosm ranged from 0.09% to 3.31% and increased with depth. Respiration rates within the mesocosm were quantified over a 342-day period using measured CO2 concentrations and a transient, one-dimensional finite-element model. Microbial respiration rates were 2 x 10(-1) micrograms C.g-1.d-1 throughout most of the system, but decreased to 10(-4) to 10(-3) micrograms C.g-1.d-1 within the capillary fringe. Microbial respiration rates were also determined in minicosms (500 g sample mass) over a range in temperatures (4 degrees to 30 degrees C) and volumetric moisture contents (0.044 to 0.37). The functional dependence of CO2 production on temperature and soil-moisture content was similar for the two scales of laboratory observation. Respiration rates in the minicosms, for temperatures and moisture contents in the mesocosm, were up to an order of magnitude greater than those determined for the mesocosm. The higher respiration rates in the minicosms, compared to the mesocosm, were attributed to greater disturbance of the samples and to shorter acclimation time in the minicosms. Extrapolating the laboratory respiration rates to field conditions yielded rates that were two to three orders of magnitude greater than rates previously determined in situ for C-horizon material. Results show that in situ microbial reaction rates determined using disturbed samples in minicosms and mesocosms yielded respiration rates that greatly exceeded field conditions. Mesocosms can, however, provide a useful environment for conducting process-related research in unsaturated environments.  相似文献   
136.
137.
138.
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号