首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   13篇
  国内免费   5篇
测绘学   1篇
大气科学   11篇
地球物理   24篇
地质学   94篇
海洋学   8篇
天文学   48篇
自然地理   26篇
  2020年   3篇
  2019年   2篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   10篇
  2012年   6篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   7篇
  2001年   2篇
  2000年   11篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   2篇
  1982年   6篇
  1981年   2篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1977年   8篇
  1976年   7篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1971年   3篇
  1968年   3篇
  1966年   3篇
  1962年   2篇
排序方式: 共有212条查询结果,搜索用时 343 毫秒
21.
In this paper we investigate the dynamical behaviour of radiation-driven winds, specifically winds that arise when Compton scattering transfers momentum from the radiation field to the gas flow. Such winds occur during strong X-ray bursts from slowly accreting neutron stars, and also may be driven from the inner regions of a black hole or neutron star accretion disc when the mass transfer rate is very high. By linearizing the radiation hydrodynamic equations around steady spherical outflow, we evaluate the time-dependent response of these winds to perturbations introduced at their inner boundaries. We find that although radiation-driven winds are generally stable, they act as mechanical filters that should produce quasi-periodic oscillations or peaked noise in their radiation output when perturbations force them stochastically. This behaviour may underlie the photospheric oscillations observed in some strong Type I X-ray bursts.  相似文献   
22.
A compact, spheroidal Type B inclusion in Allende contains melilite laths that project radially inward from the inclusion edge which show interference growth textures. The combined textural and chemical features of this object cannot be explained by independent vapor-solid condensation of grains in space, followed by random aggregation of these grains into an inclusion. Rather, it probably formed from a once-molten droplet that crystallized in response to radiative cooling from its outer surface. The crystallization sequence in this and another similar inclusion in which oxygen isotopes have been measured is: melilite-spinel-anorthite-fassaite. This sequence supports the idea that oxygen isotopic heterogeneities in coarse-grained inclusions were formed after complete solidification of these objects by partial exchange with a less16O-rich gas, and not during or before a melting event.  相似文献   
23.
Application of the principles of transport theory to studiesof magma-hydrothermal systems permits quantitative predictionsto be made of the consequences of magma intruding into permeablerocks. Transport processes which redistribute energy, mass,and momentum in these environments can be represented by a setof partial differential equations involving the rate of changeof extensive properties in the system. Numerical approximationand computer evaluation of the transport equations effectivelysimulates the crystallization of magma, cooling of the igneousrocks, advection of chemical components, and chemical and isotopicmass transfer between minerals and aqueous solution. Numerical modeling of the deep portions of the Skaergaard magma-hydrothermalsystem has produced detailed maps of the temperature, pressure,fluid velocity, integrated fluid flux, 18O-values in rock andfluid, and extent of nonequilibrium exchange reactions betweenfluid and rock as a function of time for a two-dimensional cross-sectionthrough the pluton. An excellent match was made between calculated18O-values and the measured 18O-values in the three principalrock units, basalt, gabbro, and gneiss, as well as in xenolithsof roof rocks that are now embedded in Layered Series; the latterwere evidently depleted in 18O early in the system's coolinghistory, prior to falling to the bottom of the magma chamber.The best match was realized for a system in which the bulk rockpermeabilities were 10–13 cm2 for the intrusion, 10–11cm2 for basalt, and 10–16 cm2 for gneiss; reaction domainsizes were 0.2 cm in the intrusion and gneiss and 0.01 cm inthe basalts, and activation energy for the isotope exchangereaction between fluid and plagioclase was 30 kcal/mole. The calculated thermal history of the Skaergaard system wascharacterized by extensive fluid circulation that was largelyrestricted to the permeable basalts and to regions of the plutonstratigraphically above the basalt-gneiss unconformity. Althoughfluids circulated all around the crystallizing magma, fluidflow paths were deflected around the magma sheet during theinitial 130,000 years. At that time, crystallization of thefinal sheet of magma and fracture of the rock shifted the circulationsystem toward the center of the intrusion, thereby minimizingthe extent of isotope exchange between rocks near the marginof the intrusion at this level. For comparison, similar calculationswere also made for pure conductive cooling; it was found thatthe rate of crystallization of the magma body was not changed.The solidified pluton cooled by a factor of about 2 faster inthe presence of a hydrothermal system. Transport rates of thermal energy out of the intrusion and oflow-18O fluids into the intrusion controlled the overall isotopeexchange process. During the initial 150,000 years, temperatureswere high and reaction rates were fast; thus, fluids flowinginto the intrusion quickly equilibrated with plagioclase. However,the temperature decreased between 120,000 and 175,000 yearsand caused a decrease in reaction rates and an increase in theequilibrium fractionation factor between plagioclase and fluid.Consequently, during this time period fluids in the intrusiontended to be out of equilibrium with plagioclase. After 175,000years temperatures had decreased sufficiently that reactionrates became insignificant, but convection rates were largeenough to redistribute fluid and enlarge the regions where fluidand plagioclase were out of equilibrium. By 400,000 years, thepluton had cooled to approximately ambient temperatures, andthe final 18O values were ‘frozen in’. Reactionsbetween hydrothermal fluid and the intrusion occurred over abroad range in temperature, 1000-200 °C, but 75 per centof the fluid circulated through the intrusion while its averagetemperature was >480 °C. This relatively high temperatureis consistent with the observation that only minor amounts ofhydrothermal alteration products were formed in the naturalsystem, even where several per mil shifts in 18O were detected. The relative quantities of fluid to rock integrated over theentire cooling history were 0.52 for the upper part of intrusion,0.88 for the basalt, 0.003 for the gneiss, and 0.41 for theentire domain. Almost all of the fluid flowed into the intrusionfrom the basalt host rocks that occur adjacent to the side contactsof the intrusion. Convection transferred about 20 per cent ofthe total heat contained in the gabbro upward into the overlyingbasalts; the remaining 80 per cent of the heat was transferredby conduction.  相似文献   
24.
The black inclusion from the Krymka LL3 chondrite previously found to contain ‘mysterite’ by Lewiset al. (1979) belongs to a hitherto unknown class of carbonaceous chondrites. Its olivine and pyroxene compositions. Fo 97–99 and En 96, respectively, are characteristic of carbonaceous chondrites and its plagioclase composition. An 100, is characteristic of C3's. It contains a peculiar group of Co-, Cr-rich metal grains whose compositions are similar, but not identical, to those in C2 chondrites and which also bear some similarities to those in Renazzo. Its weight ratios of total FeSiO2 and solSiO2MgO are 0.74 and 1.43, respectively, and its atomic ratio of SiAl is 10.7, exactly the same as in carbonaceous chondrites. Its bulk chemical composition is very close to that of the Murchison C2 chondrite. The association of mysterite with a special type of carbonaceous chondrite material suggests that mysterite formed by low-temperature condensation in a different region of the nebula from other carbonaceous chondrites.  相似文献   
25.
26.
The coarse-grained, Ca-rich inclusions in the Allende meteorite are the highest-temperature condensates from the cooling solar nebula and, as such, the oldest solid objects in the solar system. All refractory elements with condensation points above the accretion temperature of the inclusions whose concentrations in them have been measured are seen to be present in the inclusions in unfractionated proportion to one another relative to C1 chondrites when data are averaged for a large number of inclusions. Observational data for U and theoretical data for both U and Pu suggest that these elements exhibited refractory behavior in the solar nebula. An experiment is proposed in which fissiogenic Xe and U contents are measured in a suite of these inclusions to obtain the244Pu/238U ratio of the solar system at the time of initial condensation with an uncertainty of ±15%.  相似文献   
27.
The concentrations of zirconium and hafnium have been determined in Orgueil, Murchison, Allende, Bruderheim and Alais by RNAA. The mean Zr/Hf weight ratio in the first four of these meteorites is 31.3 ± 2.2 indicating no major fractionation of Zr from Hf. Alais contains anomalously high amounts of many refractory lithophile elements, including Zr and Hf. Orgueil contains 3.1 ppm Zr and 0.11 ppm Hf, corresponding to 9.0 and 0.16 atoms, respectively, relative to 106 Si atoms.  相似文献   
28.
Higuchiet al. (1977) proposed the existence of Tl-rich and Tl-poor “mysterite” to explain Tl and Bi contents of dark clasts in the Supuhee H6 chondrite and of bulk Supuhee. They suggested that these two components formed by gas-dust fractionation during condensation. An aliquot of one of the clasts studied by Higuchi et al. and found to contain Tl-poor mysterite was analyzed by instrumental neutron activation in this paper. A complex assortment of element fractionations was found. Data for rare earth and other refractory lithophiles and refractory and moderately volatile siderophiles are consistent with random separation and reunification of gas and dust throughout the condensation sequence. Independent evidence thus exists that processes like those invoked by Higuchi et al. to explain mysterite did occur in the region of the nebula sampled by this clast.  相似文献   
29.
Evidence for a Picritic, Volatile-rich Magma beneath Mt. Shasta, California   总被引:2,自引:1,他引:2  
Large, magnesium-rich olivines are plentiful in several Holocenecinder cones within 20 km of Mt. Shasta Summit. Glasses (formerlysilicate melts) included in the olivines are high alumina basalts(tholeiites and olivine tholeiites). In the most magnesian olivinesthe glass inclusions have large vapor bubbles. Surrounding someof the glass inclusions are broad Fe-rich zones and ghost outlines.These facts indicate crystallization of major proportions ofolivine from the initial trapped melts. The initial melts containedan inferred 24 per cent of MgO and were rich in volatiles. Theinferred entrapment temperature of the initial melt is 1410°C. The initial liquid is a possible mantle derived parentof Mt. Shasta basalts and andesites and of some hidden alpineperidotite.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号