首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   0篇
  国内免费   2篇
测绘学   2篇
大气科学   4篇
地球物理   68篇
地质学   42篇
海洋学   5篇
天文学   24篇
综合类   1篇
自然地理   8篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1987年   6篇
  1986年   7篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1969年   1篇
排序方式: 共有154条查询结果,搜索用时 93 毫秒
11.
12.
Pyroclastic deposits exposed in the caldera walls of Santorini Volcano (Greece), contain several prominent horizons of coarse-grained andesitic spatter and cauliform volcanic bombs. These deposits can be traced around most of the caldera wall. They thicken in depressions and are intimately associated with ignimbrite and co-ignimbrite lithic lag breccias. They are interpreted as a proximal facies of pyroclastic flow deposits. Evidence for a flow origin includes the presence of a fine-grained pumiceous matrix, flow deformation of ductile spatter clasts, exceedingly coarse grain sizes several kilometres from any plausible vent, imbrication of flattened spatter clasts, intimate interbedding with normal pyroclastic flow deposits and the presence of inversely graded basal layers. The deposits contain hydrothermally altered, rounded lithic ejecta including gabbro nodules. The andesitic ejecta and the fine matrix are typically moderately to poorly vesicular indicating that magmatic gas had a subordinate role in the eruptive process. The andesitic clasts contain abundant angular lithic inclusions and some clasts are themselves formed of pre-existing agglutinate. We propose that these eruptions occurred when external water gained access to the vents, causing large-scale explosions which formed pyroclastic flows rich in coarse, semifluid but poorly vesicular ejecta. We postulate that large volumes of coarse pyroclastic ejecta and degassed lava accumulated in a deep crater prior to being disrupted by these large explosions to form pyroclastic flows.  相似文献   
13.
14.
Previous laboratory experiments investigating the fluid dynamics of replenished magma chambers have been extended to model effects resulting from the release of gas. Turbulent transfer of heat between a layer of dense, hot and volatile-rich mafic magma overlying cooler more evolved magma can lead to crystallization and exsolution of volatiles in the lower layer. Small gas bubbles can cause the bulk density to decrease to that of the upper layer and thus produce sudden overturning and initiate mixing, followed by further exsolution of gas and explosive eruption. These processes have been modelled in the laboratory using a chemical reaction between sodium or potassium carbonate and nitric acid to release small bubbles of CO2. We have investigated both the initial overturning produced by gas release in the lower layer, and the subsequent evolution of gas due to intimate mixing of the two layers. The latter experiments, in which the reactants remained isolated in the two layers until overturning occurred, demonstrated unambiguously that the fluxes of chemical components across the interfaces between convecting layers are very slow compared to the flux of heat. This shows that the evolution of layers of magma of different origins and composition can take place nearly independently of each other. The magmas can coexist in the same stratified chamber, until their bulk densities become equal and they mix together. The processes illustrated in these experiments could occur in H2O-bearing magmas such as in the calcalkaline association and in CO2-bearing mafic magmas such as in silica undersaturated suites.  相似文献   
15.
Fluid motions are important in virtually all volcanic processes. Attempts to understand the mechanism of volcanic activity or the origin of magmas generally require knowledge of fluid dynamics. The use of fluid dynamics is illustrated by considering the Reynolds numbers of some volcanic fluid flow systems. The physics of high Reynolds number buoyant plumes is found to be important in situations ranging from the rise of eruption columns in the atmosphere to the replenishment of basaltic magma chambers. Application of theoretical and experimental work on plumes enables eruption rates to be deduced from eruption column heights and new hypotheses on the origin of some magmatic ores to be put forward. The influence of Reynolds number on the behaviour of lava is also discussed with application to the origin of Archaean komatiite lavas. Komatiite lavas are argued to have flowed in a turbulent manner whereas modern basalt lavas nearly always flow by laminar shear. The turbulent character of komatiites seems to provide an explanation for the origin of associated nickel-sulfide mineralization in komaiites by melting and assimilation of sulfide-rich sediment. This hypothesis depends on komatiite flow having had a high Reynolds number.  相似文献   
16.
A series of 88 Vulcanian explosions occurred at the Soufrière Hills volcano, Montserrat, between August and October, 1997. Conduit conditions conducive to creating these and other Vulcanian explosions were explored via analysis of eruptive products and one-dimensional numerical modeling of magma ascent through a cylindrical conduit. The number densities and textures of plagioclase microlites were documented for twenty-three samples from the events. The natural samples all show very high number densities of microlites, and > 50% by number of microlites have areas < 20 μm2. Pre-explosion conduit conditions and decompression history have been inferred from these data by comparison with experimental decompressions of similar groundmass compositions. Our comparisons suggest quench pressures < 30 MPa (origin depths < 2 km) and multiple rapid decompressions of > 13.75 MPa each during ascent from chamber to surface. Values are consistent with field studies of the same events and statistical analysis of explosion time-series data. The microlite volume number density trend with depth reveals an apparent transition from growth-dominated crystallization to nucleation-dominated crystallization at pressures of ∼ 7 MPa and lower. A concurrent sharp increase in bulk density marks the onset of significant open-system degassing, apparently due to a large increase in system permeability above ∼ 70% vesicularity. This open-system degassing results in a dense plug which eventually seals the conduit and forms conditions favorable to Vulcanian explosions. The corresponding inferred depth of overpressure at 250–700 m, near the base of the dense plug, is consistent with depth to center of pressure estimated from deformation measurements. Here we also illustrate that one-dimensional models representing ascent of a degassing, crystal-rich magma are broadly consistent with conduit profiles constructed via our petrologic analysis. The comparison between models and petrologic data suggests that the dense conduit plug forms as a result of high overpressure and open-system degassing through conduit walls.  相似文献   
17.
We present new Hubble Space Telescope ( HST  ) continuum and spectral line images of the radio galaxy Cygnus A. The images show much complex structure in the central kpc2. Continuum images show the central dust lane in detail, allowing detailed maps of E ( B  −  V ) to be constructed; the dust appears to follow a roughly Galactic extinction law. The emission-line components are resolved in the line images and investigated in detail. A clear 'opening cone' morphology is found, especially in the lines of Hα and [O  i ]. Blue condensations are seen in the south-eastern emission component and surrounding the central region. These are almost certainly due to star formation, which began <1 Gyr ago as deduced from the colour of the regions. More extended blue continuum is also seen and corresponds to the blue polarized component detected by other recent spectropolarimetric observations.  相似文献   
18.
Xenolith assimilation has been simulated with experiments involving melting wax spheres into hot water and aqueous solutions and characterised by a theoretical analysis. Both the cases of neutrally buoyant stationary spheres and spheres sinking through the hot host fluid are examined. Melt generated on a sphere's surface flows (compositional convection) in two regimes; as a sheet over one hemisphere and then detaching as finger plumes from the other. Positional variations in the melting rate are dominantly controlled by differences in the melt layer thickness which influence the thermal gradient and heat flux across the layer. The theoretical model predicts melt layer thicknesses and the heat flux from the surrounding fluid. Calculated melting rates agree well with experimental measurements. Partial melting of non-eutectic compositions produces a layer of crystal-melt mush at the xenolith's surface. The theoretical analysis is extended to account for variation in rheological properties across the mush layer. When stoped into typical magmas, xenoliths of common continental crust lithologies are predicted to melt at rates in the order of 2 mm/hour. Thicknesses of the mobile mush layer around xenoliths are predicted to be typically a few centimetres. Relatively mafic lithologies can melt quicker than silicic compositions because, although they are typically more refractory, their lower melt viscosities result in thinner mush layers and so higher heat fluxes. Especially quick melting of water-saturated lithologies occurs as a consequence of both the reduction in melting temperatures and melt viscosities. Due to hot ambient conditions in the lower continental crust the assimilation of xenoliths into underplated basaltic magma can be very rapid. For granulites and mafic-granulites the predicted melting rates are up to 17 mm/hour. Fast rates of melting and efficient mixing of melt into the host magma indicate that assimilation of xenoliths will have a significant influence on the compositional and thermal evolution of magmas. Received: 7 November 1996 / Accepted: 5 January 1998  相似文献   
19.
20.
We present Hubble Space Telescope ( HST ) images of seven low-redshift quasars (six taken with the Planetary Camera, one with the Wide Field Camera). These complete the sample of 14 quasars observed by the Faint Object Camera Investigation Definition Team (FOC IDT). Following subtraction of the quasar nuclear light, host galaxies can be seen in all seven cases. A combination of the optical morphology and luminosity profiles of the residual host galaxies and the results of 2D cross-correlation model fitting implies that five of the objects have elliptical host galaxies and two have disc host galaxies. The luminosities vary from slightly fainter than L * to about 1.3 mag brighter than L *.   We discuss the properties of the complete sample of 14 quasars. Nine of the objects appear to have elliptical host galaxies (all six of the radio-loud quasars in the sample as well as three radio-quiet quasars). Two further radio-quiet quasars appear to lie in disc galaxies. The other three objects (radio-quiet, ultraluminous infrared quasars) all lie in violently interacting systems. The sample as a whole has an average luminosity about 0.8 mag brighter than L *, although the radio-loud objects have hosts on average 0.7 mag brighter than the radio-quiet objects.   We compare our results with those from HST imaging of quasars by other authors. Taken together, our observations are in broad agreement with those of Bahcall et al. Radio-loud quasars appear to lie in luminous elliptical galaxies whereas radio-quiet quasars are found to lie in either elliptical or spiral hosts. Host galaxy luminosities (of radio-quiet and radio-loud quasars) are much brighter than would be expected if they followed a Schechter luminosity function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号