首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8310篇
  免费   1459篇
  国内免费   124篇
测绘学   238篇
大气科学   393篇
地球物理   3347篇
地质学   3253篇
海洋学   651篇
天文学   1305篇
综合类   26篇
自然地理   680篇
  2022年   33篇
  2021年   98篇
  2020年   119篇
  2019年   273篇
  2018年   311篇
  2017年   405篇
  2016年   472篇
  2015年   474篇
  2014年   525篇
  2013年   739篇
  2012年   452篇
  2011年   543篇
  2010年   462篇
  2009年   457篇
  2008年   499篇
  2007年   389篇
  2006年   343篇
  2005年   331篇
  2004年   268篇
  2003年   302篇
  2002年   260篇
  2001年   194篇
  2000年   195篇
  1999年   97篇
  1998年   89篇
  1997年   72篇
  1996年   80篇
  1995年   65篇
  1994年   73篇
  1993年   48篇
  1992年   62篇
  1991年   61篇
  1990年   48篇
  1989年   48篇
  1988年   43篇
  1987年   54篇
  1986年   49篇
  1985年   68篇
  1984年   63篇
  1983年   66篇
  1982年   66篇
  1981年   69篇
  1980年   60篇
  1979年   42篇
  1978年   58篇
  1977年   37篇
  1976年   36篇
  1975年   36篇
  1974年   36篇
  1973年   39篇
排序方式: 共有9893条查询结果,搜索用时 16 毫秒
11.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
12.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
13.
14.
This paper deals with the formation processes and the palaeoenvironmental significance of relict slope deposits located on the uppermost part of the north Portugal mountains. For this purpose, seven key sites representative of the different lithofacies have been selected and analysed in detail. The data show that three main dynamic processes are responsible for the emplacement of regional fossil slope deposits: runoff, debris flows and dry grain flows. The ubiquity of these processes and the lack of frost‐related features or landforms do not support the existence of severe Pleistocene climates in this part of the lberian Peninsula as postulated by previous work. Pedological data gathered at one of the study sites show that a subalpine environment was probably present at 700–800 m altitude between 29 and 14 kyr. Using data from the Pyrenees Mountains, a 6.5 to 12°C depression in mean annual temperature has been tentatively postulated for this Pleniglacial period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
15.
Wood  Paul  Martens  Piet 《Solar physics》2003,218(1-2):123-135
We study the process of flux cancellation and filament formation in a nest of three decaying active regions, using data from SOHO MDI and EIT, and Hα images from Meudon and Big Bear. We find that there are no apparent EUV loops connecting the two poles of a cancelling feature prior to and during cancellation, suggesting an absence of coronal magnetic connectivity between these opposite polarity flux patches. We further find that the cancellation occurs at the ends of the Hα sections of the filament and is accompanied by a noticeable increase in Hα intensity and linkage of the Hα sections, but that the locations of the links remain the weakest in Hα absorption. We present our measurements of the amount of flux cancelled at each site and show it is in agreement with an estimate of the axial flux contained in the filament. We also observe two events of flux emergence, and find that they do not influence the filament formation in this case. We compare our results with similar measurements in recent papers and find agreement for the amounts of cancelled flux per patch, except for one case in a young emerging active region, for which we provide an alternative interpretation. We conclude that our measurements of flux cancellation are consistent with both the scenarios in which the filament is formed through ``head-to-tail" linkage, as well as the scenario in which filament flux tubes emerge as a whole from below the photosphere, but that only the former scenario is consistent with the apparent absence of coronal magnetic links between the cancelling magnetic patches.  相似文献   
16.
The morphological and velocity structures in the gaseous (HI and CO) and stellar components of two interacting systems are examined. Both Arp 140 and Arp 104 reveal extended tidal tails in the HI. The Hα and FIR fluxes of Arp 140 yield similar SFR of ∼ 0.8 M yr-1. In contrast the Hα flux of Arp 104 yields a SFR of ∼ 0.05 M yr-1, ∼ 20 times smaller than that obtained from the FIR flux. Spectra were used to examine the changing velocity of atomic and molecular gas in NGC 5218 (Arp 104). The atomic and molecular gas were found to be dynamically similar with comparable velocities and velocity widths across the galaxy; consistent with the two phases responding similarly to the interaction, or enhanced HI to CO conversion in the centre of the galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
17.
The ordinary kriging method, a geostatistical interpolation technique, was applied for developing contour maps of design storm depth in northern Taiwan using intensity–duration–frequency (IDF) data. Results of variogram modelling on design storm depths indicate that the design storms can be categorized into two distinct storm types: (i) storms of short duration and high spatial variation and (ii) storms of long duration and less spatial variation. For storms of the first category, the influence range of rainfall depth decreases when the recurrence interval increases, owing to the increasing degree of their spatial independence. However, for storms of the second category, the influence range of rainfall depth does not change significantly and has an average of approximately 72 km. For very extreme events, such as events of short duration and long recurrence interval, we do not recommend usage of the established design storm contours, because most of the interstation distances exceed the influence ranges. Our study concludes that the influence range of the design storm depth is dependent on the design duration and recurrence interval and is a key factor in developing design storm contours. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
18.
A class of magnetostatic equilibria with axial symmetry outside a unit sphere in the presence of plasma pressure and an r –2 gravitational field is constructed. The structure contains a localized current-carrying region confined by a background bipolar potential field, and the shape of the region changes subject to the variation of the electric current. The continuity requirement for the magnetic field and plasma pressures at the outer boundary of the cavity defines a free boundary problem, which is solved numerically using a spectral boundary scheme. The model is then used to study the expansion of the current-carrying region, caused by the buildup of magnetic shear, against the background confining field. The magnetic shear in our model is induced by the loading of an azimuthal field, accompanied by a depletion of plasma density.We show that due to the additional effect of confinement by the dense surrounding plasma, the energy of the magnetic field can exceed the energy of its associated open field, presumably a necessary condition for the onset of coronal mass ejections. (However, the plasma beta of the confining fluid is higher than that in the outer boundary of a realistic helmet-streamer structure.) Furthermore, under the assumption that coronal mass ejections are driven by magnetic buoyancy, the result from our model study lends further support to the notion of a suspended magnetic flux rope in the low-density cavity of a helmet-streamer as a promising pre-ejection configuration.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
19.
The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.  相似文献   
20.
In many areas of engineering practice, applied loads are not uniformly distributed but often concentrated towards the centre of a foundation. Thus, loads are more realistically depicted as distributed as linearly varying or as parabola of revolution. Solutions for stresses in a transversely isotropic half‐space caused by concave and convex parabolic loads that act on a rectangle have not been derived. This work proposes analytical solutions for stresses in a transversely isotropic half‐space, induced by three‐dimensional, buried, linearly varying/uniform/parabolic rectangular loads. Load types include an upwardly and a downwardly linearly varying load, a uniform load, a concave and a convex parabolic load, all distributed over a rectangular area. These solutions are obtained by integrating the point load solutions in a Cartesian co‐ordinate system for a transversely isotropic half‐space. The buried depth, the dimensions of the loaded area, the type and degree of material anisotropy and the loading type for transversely isotropic half‐spaces influence the proposed solutions. An illustrative example is presented to elucidate the effect of the dimensions of the loaded area, the type and degree of rock anisotropy, and the type of loading on the vertical stress in the isotropic/transversely isotropic rocks subjected to a linearly varying/uniform/parabolic rectangular load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号