首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   1篇
  国内免费   5篇
测绘学   4篇
大气科学   15篇
地球物理   50篇
地质学   170篇
海洋学   38篇
天文学   69篇
综合类   1篇
自然地理   19篇
  2024年   1篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   32篇
  2012年   11篇
  2011年   21篇
  2010年   16篇
  2009年   25篇
  2008年   26篇
  2007年   15篇
  2006年   12篇
  2005年   27篇
  2004年   16篇
  2003年   16篇
  2002年   18篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   12篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1976年   3篇
  1973年   2篇
  1960年   1篇
排序方式: 共有366条查询结果,搜索用时 327 毫秒
41.
42.
This study provides new 40Ar/39Ar geochronological constraints on the age of the Alpine tectonics in the Aspromonte Massif (southern part of the Calabrian–Peloritan belt). This massif exposes the upper units of the Calabride Complex which originated from the European continental margin. The Calabride Complex was incorporated in the Alpine orogenic wedge and then integrated into the Apennines and Maghrebides fold-and-thrust belts. Throughout the Calabride Complex there is evidence for a two stage tectonic history, which remains however rather poorly dated: Alpine nappe stacking is followed by extensional reworking along the former thrust contacts or along new detachment surfaces. Our new ages suggest that exhumation of the uppermost units, which accompanied nappe stacking, probably started at 45 Ma and that the deepest units were almost completely exhumed at 33 Ma. This kinematics probably corresponds to syn-orogenic extension while the end of exhumation is clearly related to the extensional tectonics dated at 28.6 Ma along detachment structures.Our geochronological data reveal a very short lag time between accretional and extensional processes in this part of the Mediterranean Alpine orogenic belt. The direction of extension, when the units are restored to their initial position (i.e. before the opening of the Western Mediterranean basins and the bending of the arc) is NNE–SSW. Such a direction does not fit with the eastward slab-retreat model generally put forward to explain extension in the Western Mediterranean. In contrast, we provide evidence for roughly N–S middle Oligocene extension in the accretionary prism, not previously described in this part of the Mediterranean domain.  相似文献   
43.
We present results and interpretation of a 72 km long deep seismic reflection profile acquired across the internal zone of the Hercynian belt of South Brittany. The profile is of excellent quality, most of the crust being highly reflective. The “ARMOR 2 South” profile, is correlated with the “ARMOR 2 North” profile that was published in 2003. Correlation of the main subsurface reflections with surface geological and structural data provides important information about the crustal structure that resulted from thickening during Late Devonian and regional-scale extension during Late Carboniferous. In particular, seismics image shows a very high reflectivity zone, lying flat over more than 40 km at about 10–12 km depth. This zone is interpreted as a major zone of ductile crustal thinning.  相似文献   
44.
45.
It is found that velocity shear enables the extraction of kinetic energy from the background flow by Dust-Acoustic waves. It is also shown that the velocity shear leads to the appearance of a new mode of the dust particles collective behaviour, called shear dust vortices. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
46.
ABSTRACT This paper presents high-precision U–Pb ages and initial Hf isotopic compositions of zircon from mafic to felsic rocks of the Kohistan Arc Complex, Pakistan. Three magmatic pulses tapping geochemically different reservoirs are distinguished. Partial melting of mantle with MORB-type isotopic characteristics generated 99–92-Ma-old magmas. Plutonism around 85 Ma tapped a more fertile mantle source, most likely consisting of a >600-Ma-old metasomatically enriched mantle, or of mantle contaminated by an old sedimentary component; 82-Ma-old felsic peraluminous dykes have MORB-type isotopic compositions considered to be inherited from remelting earlier magmas in the deep base of the arc. The isotopic results demonstrate several and rather rapid changes in melt source region during arc development. They also show that there was subordinate continental influence and negligible importance of slab components for the Hf budget during the generation of the Kohistan Arc Complex.  相似文献   
47.
48.
We present the results of an intensive spectroscopic campaign in the optical waveband revealing that Cyg OB2 #8A is an O6+O5.5 binary system with a period of about 21.9 days. Cyg OB2 #8A is a bright X-ray source, as well as a non-thermal radio emitter. We discuss the binarity of this star in the framework of a campaign devoted to the study of non-thermal emitters, from the radio waveband to γ-rays. In this context, we attribute the non-thermal radio emission from this star to a population of relativistic electrons, accelerated by the shock of the wind-wind collision. These relativistic electrons could also be responsible for a putative γ-ray emission through inverse Compton scattering of photospheric UV photons, thus contributing to the yet unidentified EGRET source 3EG J2033+4118. Based partly on data Obtained at the Observatoire de Haute-Provence, France.  相似文献   
49.
Mylonitic gneisses of the Bulgarian and Greek Rhodope were deformed under medium pressure-type metamorphism. The kinematic information contained in these gneisses shows that shear-deformation occurred during development of a nappe complex. Lithologies and metamorphic histories allow a lower (footwall) and an upper (hanging wall) terrane to be distinguished that define a crustal-scale duplex. As oceanic crust is involved, collision between two continental units with subsequent crustal thickening is inferred. The blocks would be Moesia to the north, and the Lower-Rhodope promontory to the south, which collided in the Mesozoic to early Cenozoic. The nappe complex is characterized by south to southwestward (foreland directed) piling-up and is associated with both coeval and subsequent extension. The late extension is associated with the establishment of a high temperature-low pressure metamorphic gradient and plutonism that predates, but makes a transition to, the lithospheric extension of the Aegean Arc.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号