首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   8篇
  国内免费   5篇
测绘学   8篇
大气科学   51篇
地球物理   81篇
地质学   267篇
海洋学   60篇
天文学   105篇
综合类   2篇
自然地理   33篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   2篇
  2018年   14篇
  2017年   10篇
  2016年   9篇
  2015年   8篇
  2014年   12篇
  2013年   38篇
  2012年   29篇
  2011年   33篇
  2010年   24篇
  2009年   39篇
  2008年   32篇
  2007年   20篇
  2006年   20篇
  2005年   34篇
  2004年   26篇
  2003年   24篇
  2002年   29篇
  2001年   11篇
  2000年   7篇
  1999年   13篇
  1998年   16篇
  1997年   8篇
  1996年   12篇
  1995年   9篇
  1994年   11篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1987年   7篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1973年   3篇
  1971年   2篇
排序方式: 共有607条查询结果,搜索用时 15 毫秒
141.
142.
Fossil assemblages of planktonic Foraminifera contain many valuable clues to paleoclimate and paleo-oceanography. Unfortunately, our understanding of production, dissolution, redeposition, and other processes of foraminiferal sedimentation is but rudimentary. Lacking direct observations, information largely rests on comparisons between abundance and composition patterns of life-, death-, and sediment-assemblages.  相似文献   
143.
Discrete element methods (DEMs) are used for layered geomaterials to investigate the dependency of traditional engineering constants on material properties and loading conditions. Shear deformations and compression tests parallel and perpendicular to layering are conducted on samples of varying kerogen volume fractions, confining pressures, porosities, and layer geometries. The goal of this article is to develop a method to better characterize oil shale (a transversely isotropic layered geomaterial) while eliminating high experimental costs. The DEM simulations conducted in this study demonstrate strong dependencies of Young's modulus, Poisson's ratio, and shear modulus on kerogen volume fraction and porosity. Furthermore, a rule of thumb for layer thickness and particle resolution is proposed for simulation design. Results agree well with robust effective medium theories, solidify the ability of DEM to model the mechanical properties of layered heterogenous materials, and encourage the use of DEM to study more complicated layered media and material failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
144.
The low‐temperature form of CuFe2S3, cubanite, has been identified in the CI chondrite and NASA Stardust mission collections. The presence of this mineral constrains the maximum temperature to 210 °C since the time of its formation. However, until now, the conditions under which cubanite forms were less well constrained. In order to refine the history of the time‐varying, low‐temperature fluids which existed on the CI‐chondrite parent body and Comet 81P/Wild 2 (Wild 2), we synthesized cubanite. The experimental synthesis of this mineral was achieved, for the first time, under low‐temperature aqueous conditions relevant to the CI‐chondrite parent body. Using a variant of in situ hydrothermal recrystallization, cubanite formed in aqueous experiments starting with temperatures of 150 and 200 °C, pH approximately 9, and oxygen fugacities corresponding to the iron‐magnetite buffer. The composition and structure of the cubanite were determined using electron microprobe and transmission electron microscopy techniques, respectively. The combined compositional, crystallographic, and experimental data allow us to place limits on the conditions under which the formation of cubanite is feasible, which in turn constrains the nature of the fluid phase on the CI‐chondrite parent body and Wild 2 when cubanite was forming.  相似文献   
145.
Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO2 and H2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.  相似文献   
146.
The Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) instrument is a visible and near-infrared imaging spectrometer on board the European Mars Express (MEx) mission. The on-board calibration (OBC) performed at the beginning of observations on each orbit reveals that the photometric response of the C channel (1.0–2.5 μm) has been very stable since orbit insertion in January 2004. On the contrary the L channel (2.5–5.1 μm) response has varied significantly during the mission, and only orbits for which the response is close to nominal could be used with confidence. The spatial coverage of ice-free surfaces in this wavelength range is consequently limited to only ~30%, mainly during northern spring and summer. This paper presents the empirical method used to derive new instrumental transfer functions (ITF) for the non-nominal orbits. This method consists of analyzing the variation of the signal between several observations of a same region acquired at nominal and non-nominal calibration states. In the cases where the mineralogy and the atmospheric conditions between the two observations are the same, the variation in reflectance spectra is only due to the ITF variation, which provides a new ITF. We then associate these new ITFs with their corresponding OBCs to model a relationship between both. The resulting model enables us to provide a new ITF for each orbit for which the OBC is available. The new ITFs derived for the entire dataset have been validated (1) through a comparison of the C and L channel global albedo trends and (2) through a comparison of the surface temperatures derived from the L channel with those calculated from the General Circulation Model (GCM) numerical simulation of the LMD released in the Martian Climate Database. The non-nominal data processed with adapted ITFs for orbits up to 3050 increase the non-icy surface coverage of Mars to ~70% including all seasons.  相似文献   
147.
We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 yr period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data show that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis   a = 7.58 ± 0.24 mas  , an axis ratio   r = 0.39 ± 0.03  and a position angle  θ= 35°± 2°  .  相似文献   
148.
Mineral precipitation in the pores of a rock may exert a force, which is called crystallization pressure. This process has been studied experimentally and results bring a new look on the way fractures may develop and seal in natural systems. Cylindrical core samples of porous limestone and sandstone were left for several weeks in contact with an aqueous solution saturated with sodium chloride, at 30 or 45 °C, under axial normal stress in the range 0.02–0.26 MPa. The fluid was allowed to rise in the core samples by capillary forces, up to a controlled height where evaporation and precipitation occurred. The uniaxial deformation of the samples was measured using high-resolution displacement sensors. The samples were characterized using computed X-ray tomography, allowing therefore imaging in 3D the intensity and localization of the damage. Two kinds of damage could be observed. Firstly, small rock fragments were peeled from the sample surface. Secondly, and more interestingly, fracture networks developed, by nucleation of microcracks at the interface where evaporation occurred, and propagation to the free surface. Two families of fractures could be identified. A first set of sealed fracture parallel to the evaporation front is directly induced by crystallization pressure. A second fracture network, perpendicular to the evaporation front, accommodates the first set of fractures. An analytical model where fluid flow is coupled to evaporation, vapour transport, and localization of mineral precipitation explains the shape of this fracture network.  相似文献   
149.
The analysis of the data collected over Brazil, Northern Australia and Africa from balloons, high altitude aircraft and satellites during the recent HIBISCUS, TROCCINOX, SCOUT-O3 and AMMA European campaigns, has led to significant revision in the understanding of troposphere-to-stratosphere transport. Repeated observations of strong updrafts of adiabatically cooled and washed-out tropospheric air rich in chemical and greenhouse gases by convective overshooting over the three continents, demonstrate the high frequency of occurrence of such events in contrast to their generally assumed scarcity. Moreover, global scale information provided by ODIN and CALIPSO satellite observations suggests that the mechanism could play a major, if not dominant, role in troposphere-to-stratosphere transport in contrast to the generally evoked slow ascent by radiative heating. Ignored by global scale models because of their limited extension and duration, convective overshootings might have a significant impact on the chemistry and climate of the stratosphere.  相似文献   
150.
On the eve of the 15th climate negotiations conference in Copenhagen, the pressure to assess all climate mitigation options is mounting. In this study, a bio-physic model and a socio-economic model were designed and coupled to assess the carbon sequestration potential of agricultural intensification in Senegal. The biophysical model is a multiple linear regression, calibrated and tested on a dataset of long-term agricultural trials established in West Africa. The socio-economic model integrates both financial and environmental costs related to considered practice changes. Both models are spatially explicit and the resulting spatial patterns were computed and displayed over Senegal with a geographic information system. The national potential from large-scale intensification was assessed at 0.65–0.83 MtC. With regards to local-scaled intensification as local projects, the most profitable areas were identified in agricultural expansion regions (especially Casamance), while the areas that meet the current financial additionality criteria of the Clean Development Mechanism were located in the northern part of the Peanut Basin. Using the current relevant mode of carbon valuation (Certified Emission Reductions), environmental benefits are small compared to financial benefits. This picture is radically changed if “avoided deforestation”, a likely consequence of agricultural intensification, is accounted for as the greenhouse gases sink capacity of projects increases by an average of a hundred-fold over Senegal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号