首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   1篇
  国内免费   5篇
测绘学   4篇
大气科学   18篇
地球物理   60篇
地质学   196篇
海洋学   52篇
天文学   70篇
综合类   1篇
自然地理   23篇
  2024年   1篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   8篇
  2017年   6篇
  2016年   4篇
  2015年   8篇
  2014年   3篇
  2013年   36篇
  2012年   15篇
  2011年   22篇
  2010年   19篇
  2009年   28篇
  2008年   33篇
  2007年   18篇
  2006年   14篇
  2005年   30篇
  2004年   18篇
  2003年   16篇
  2002年   19篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   12篇
  1997年   6篇
  1996年   5篇
  1995年   8篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1973年   2篇
  1960年   1篇
排序方式: 共有424条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
105.
Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO2 and H2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.  相似文献   
106.
The Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) instrument is a visible and near-infrared imaging spectrometer on board the European Mars Express (MEx) mission. The on-board calibration (OBC) performed at the beginning of observations on each orbit reveals that the photometric response of the C channel (1.0–2.5 μm) has been very stable since orbit insertion in January 2004. On the contrary the L channel (2.5–5.1 μm) response has varied significantly during the mission, and only orbits for which the response is close to nominal could be used with confidence. The spatial coverage of ice-free surfaces in this wavelength range is consequently limited to only ~30%, mainly during northern spring and summer. This paper presents the empirical method used to derive new instrumental transfer functions (ITF) for the non-nominal orbits. This method consists of analyzing the variation of the signal between several observations of a same region acquired at nominal and non-nominal calibration states. In the cases where the mineralogy and the atmospheric conditions between the two observations are the same, the variation in reflectance spectra is only due to the ITF variation, which provides a new ITF. We then associate these new ITFs with their corresponding OBCs to model a relationship between both. The resulting model enables us to provide a new ITF for each orbit for which the OBC is available. The new ITFs derived for the entire dataset have been validated (1) through a comparison of the C and L channel global albedo trends and (2) through a comparison of the surface temperatures derived from the L channel with those calculated from the General Circulation Model (GCM) numerical simulation of the LMD released in the Martian Climate Database. The non-nominal data processed with adapted ITFs for orbits up to 3050 increase the non-icy surface coverage of Mars to ~70% including all seasons.  相似文献   
107.
Mineral precipitation in the pores of a rock may exert a force, which is called crystallization pressure. This process has been studied experimentally and results bring a new look on the way fractures may develop and seal in natural systems. Cylindrical core samples of porous limestone and sandstone were left for several weeks in contact with an aqueous solution saturated with sodium chloride, at 30 or 45 °C, under axial normal stress in the range 0.02–0.26 MPa. The fluid was allowed to rise in the core samples by capillary forces, up to a controlled height where evaporation and precipitation occurred. The uniaxial deformation of the samples was measured using high-resolution displacement sensors. The samples were characterized using computed X-ray tomography, allowing therefore imaging in 3D the intensity and localization of the damage. Two kinds of damage could be observed. Firstly, small rock fragments were peeled from the sample surface. Secondly, and more interestingly, fracture networks developed, by nucleation of microcracks at the interface where evaporation occurred, and propagation to the free surface. Two families of fractures could be identified. A first set of sealed fracture parallel to the evaporation front is directly induced by crystallization pressure. A second fracture network, perpendicular to the evaporation front, accommodates the first set of fractures. An analytical model where fluid flow is coupled to evaporation, vapour transport, and localization of mineral precipitation explains the shape of this fracture network.  相似文献   
108.
The analysis of the data collected over Brazil, Northern Australia and Africa from balloons, high altitude aircraft and satellites during the recent HIBISCUS, TROCCINOX, SCOUT-O3 and AMMA European campaigns, has led to significant revision in the understanding of troposphere-to-stratosphere transport. Repeated observations of strong updrafts of adiabatically cooled and washed-out tropospheric air rich in chemical and greenhouse gases by convective overshooting over the three continents, demonstrate the high frequency of occurrence of such events in contrast to their generally assumed scarcity. Moreover, global scale information provided by ODIN and CALIPSO satellite observations suggests that the mechanism could play a major, if not dominant, role in troposphere-to-stratosphere transport in contrast to the generally evoked slow ascent by radiative heating. Ignored by global scale models because of their limited extension and duration, convective overshootings might have a significant impact on the chemistry and climate of the stratosphere.  相似文献   
109.
On the eve of the 15th climate negotiations conference in Copenhagen, the pressure to assess all climate mitigation options is mounting. In this study, a bio-physic model and a socio-economic model were designed and coupled to assess the carbon sequestration potential of agricultural intensification in Senegal. The biophysical model is a multiple linear regression, calibrated and tested on a dataset of long-term agricultural trials established in West Africa. The socio-economic model integrates both financial and environmental costs related to considered practice changes. Both models are spatially explicit and the resulting spatial patterns were computed and displayed over Senegal with a geographic information system. The national potential from large-scale intensification was assessed at 0.65–0.83 MtC. With regards to local-scaled intensification as local projects, the most profitable areas were identified in agricultural expansion regions (especially Casamance), while the areas that meet the current financial additionality criteria of the Clean Development Mechanism were located in the northern part of the Peanut Basin. Using the current relevant mode of carbon valuation (Certified Emission Reductions), environmental benefits are small compared to financial benefits. This picture is radically changed if “avoided deforestation”, a likely consequence of agricultural intensification, is accounted for as the greenhouse gases sink capacity of projects increases by an average of a hundred-fold over Senegal.  相似文献   
110.
A brackish-water cold seep on the North Anatolian Fault (NAF) in the Marmara Sea was investigated with the Nautile submersible during the MarNaut cruise in 2007. This active zone has already been surveyed and revealed evidence of active seeping on the seafloor, such as bubble emissions, patches of reduced sediments, microbial mats and authigenic carbonate crusts. MarNaut was the first opportunity to sample benthic communities in the three most common microhabitats (bioturbated and reduced sediments, carbonate crust) and to examine their relationships with environmental conditions. To do so, faunal communities were sampled and chemical measurements were taken close to the organisms. According to diversity indices, the bioturbated microhabitat exhibited the highest taxonomic diversity and evenness despite a lower number of samples. Conversely, the reduced sediment microhabitat exhibited the lowest taxonomic diversity and evenness. The carbonate crust microhabitat was intermediate although it had the highest biomass. Multivariate analyses showed that (1) fauna were relatively similar within a single microhabitat; (2) faunal community structure varied greatly between the different microhabitats; (3) there was a link between faunal distribution and the type of substratum; and (4) chemical gradients (i.e. methane, oxygen and probably sulphides) may influence faunal distribution. The estimated fluid flow velocity (0.4–0.8 m/yr) confirmed the presence of fluid emission and provided evidence of seawater convection in the two soft-sediment microhabitats. Our results suggest that the reduced sediments may represent a harsher environment with high upward fluid flow, which restrains seawater from penetrating the sediments and inhibits sulphide production, whereas bioturbated sediments can be viewed as a bio-irrigated system with sulphide production occurring at greater depths. Therefore, the environmental conditions in reduced sediments appear to prevent the colonization of symbiont-bearing fauna, such as vesicomyid bivalves, which are more often found in bioturbated sediments. Fluid flow appears to control sulphide availability, which in turn influences the horizontal and vertical distribution patterns of fauna at small spatial scales as observed at other seep sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号