首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25314篇
  免费   227篇
  国内免费   921篇
测绘学   1432篇
大气科学   2026篇
地球物理   4718篇
地质学   11896篇
海洋学   1094篇
天文学   1778篇
综合类   2162篇
自然地理   1356篇
  2022年   5篇
  2021年   17篇
  2020年   24篇
  2019年   23篇
  2018年   4783篇
  2017年   4066篇
  2016年   2609篇
  2015年   265篇
  2014年   124篇
  2013年   73篇
  2012年   1036篇
  2011年   2801篇
  2010年   2051篇
  2009年   2360篇
  2008年   1933篇
  2007年   2403篇
  2006年   88篇
  2005年   233篇
  2004年   441篇
  2003年   442篇
  2002年   275篇
  2001年   58篇
  2000年   70篇
  1999年   33篇
  1998年   34篇
  1997年   10篇
  1996年   13篇
  1995年   12篇
  1994年   11篇
  1993年   6篇
  1992年   9篇
  1991年   6篇
  1990年   6篇
  1988年   7篇
  1987年   3篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   6篇
  1981年   28篇
  1980年   26篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   9篇
  1975年   4篇
  1973年   4篇
  1968年   2篇
  1877年   2篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
991.
Generally, induced hydraulic fractures are generated by fluid overpressure and are used to increase reservoir permeability through forming interconnected fracture systems. However, in heterogeneous and anisotropic rocks, many hydraulic fractures may become arrested or offset at layer contacts under certain conditions and do not form vertically connected fracture networks. Mechanical layering is an important factor causing anisotropy in sedimentary layers. Hence, in this study, with a shale gas reservoir case study in the Longmaxi Formation in the southeastern Chongqing region, Sichuan Basin, we present results from several numerical models to gain quantitative insights into the effects of mechanical layering on hydraulic fracturing. Results showed that the fractured area caused by hydraulic fracturing indicated a linear relationship with the neighboring layer’s Young’s modulus. An increase of the neighboring layer’s Young’s modulus resulted in better hydraulic fracturing effects. In addition, the contact between two neighboring layers is regarded as a zone with thickness and mechanical properties, which also influences the effects of hydraulic fracturing in reservoirs. The initial hydraulic fracture was unable to propagate into neighboring layers under a relatively low contact’s Young’s modulus. When associated local tensile stresses exceeded the rock strength, hydraulic fractures propagated into neighboring layers. Moreover, with the contact’s Young’s modulus becoming higher, the fractured area increased rapidly first, then slowly and finally became stable.  相似文献   
992.
The present investigation focused on the numerical simulation of the gravity currents of non-Newtonian fluids by means of the incompressible smoothed particle hydrodynamics (ISPH) approach. Firstly, to solve the rheological properties of the non-Newtonian Bingham model by ISPH method, the multi-viscodensity approach has been introduced. Then, this methodology has been used to simulate the annular viscometer and landslide deformation test cases. Through simulating these test cases, the viscoplastic behavior of the non-Newtonian viscosity and propagation of tsunami waves due to underwater landslide movement have been observed. Numerical results were in good agreement with the theoretical and experimental studies and showed that this methodology can be used to investigate precisely the generation and propagation of tsunami surface waves.  相似文献   
993.
Several methods of time series analysis and forecasting require data at regular time intervals. But in space geodesy, most datasets are often full of gaps, resulting for example from hardware issue, modification of models, change of analysis strategy, and local geophysical phenomenon. The purpose of this paper is to fill the gaps in time series of space-geodetic station positions, by the use of two different approaches: the iterative singular spectrum analysis (ISSA) and the generalized regression neural network (GRNN). In order to test the efficiency of the proposed methods to properly process missing data, we created synthetic gaps at random points in regular time series (i.e., time series without gaps) of Global Positioning System (GPS) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) station positions with data span longer than 4 years. For each analyzed time series, we created gaps (by removing successive points) of different lengths ranging from 1 to 52 gaps, and then, we filled these gaps by ISSA, GRNN, and other classical methods of interpolation such as nearest neighbor, linear, and cubic interpolations.The interpolation precision was evaluated by the technique of cross-validation which compares the estimated values with the original data. After several simulations on position time series with different lengths, we found that the ISSA technique provides better results in terms of root mean square error.  相似文献   
994.
Shale gas reservoirs develop multi-scale pores ranging in size from nanometer to micrometer, the characteristics of gas transport involve the multi-scale pore space which divided into organic and inorganic matrix pores. This paper reveals the shale pore structure with large amounts of organic mesoporous based on the techniques of focused ion beam scanning electron microscopes (FIB-SEM), high-pressure mercury intrusion (MICP), and low-pressure adsorption (LPA), which also shows the size and distribution of these pores. Then the research characterizes effective pore scale via circular tube bundle model with due regard for gas adsorption layer thickness on the walls of organic pores and water film thickness on the walls of inorganic pores, and the investigation of shale pore geometry is significant for designing and developing shale gas reservoirs. This work shows that the widely existing shale mesoporous volume with diameter of 2~50 nm accounts for 81% based on experimental testing, then it reduces to about 76% via effective diameter model calculation.  相似文献   
995.
Station recording air temperature (Ta) has limited spatial coverage, especially in unpopulated areas. Since temperature can change greatly both spatially and temporally, stations data are often inadequate for meteorology and subsequently climatology studies. Time series of moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (Ts) and normalized difference vegetation index (NDVI) products, combined with digital elevation model (DEM), albedo from Era-Interim and meteorological data from 2006 to 2015, were used to estimate daily mean air temperature over Iran. Geographically weighted regression was applied to compare univariate and multivariate model accuracy. In the first model, which only interfered with land surface temperature (LST), the results indicate a weak performance with coefficient of determination up to 91% and RMSE of 1.08 to 2.9 °C. The mean accuracy of a four-variable model (which used LST, elevation, slope, NDVI) slightly increased (6.6% of the univariate model accuracy) when compared to univariate model. RMSE dropped by 19% of the first model. By addition albedo in the third model, the coefficient of determination increased significantly. This increase was 32% of the univariate model and 23.75% of the 4-variable model accuracy. The statistical comparison between the three models revealed that there is significant improvement in air estimation by applying the geographically weighted regression (GWR) method with interfering LST, NDVI, elevation, slope, and albedo with mean absolute RMSE of 0.62 °C and mean absolute R2 of 0.99. In order to better illustrate the third model, t values were spatially mapped at 0.05 level.  相似文献   
996.
The relative rate of rise of the sea levels measured by a tide gauge is made of a sea and a land component. The first is usually restricted to the global short-term effect of melting icecaps and expansion of water mass due to global temperature change. The second is often limited to the regional long-term effects of glacial isostatic adjustment (GIA). Sometimes, the regional subsidence, due to compaction and ground water withdrawal, is considered. Here we show as this assumption of regional subsidence fails to represent the relative sea level patterns of Sandy Hook, NJ, and The Battery, NY, as well as of Venezia Punta Della Salute, Venezia II, Trieste and Trieste II. The subsidence of the tide gauge instrument may only be addressed by the precise monitoring of the tide gauge vs. a Global Navigation Satellite System (GNSS) antenna, even if the GNSS tracking is only recent and not yet very accurate. The relative sea level records are much more complicated than what is thought.  相似文献   
997.
The objective of this study is to find the order and coefficients of non-low-phase causal filters for ARMA (auto regressive moving average) filter model, using the Kurtosis minimization criterion. This method is based on the Kurtosis calculation of the treated sample at the input level and its identification at the output of the ARMA model. For this purpose, the order and coefficients of the AR (auto regressive) part are identified using the Yule-Walker algorithm at order two and then extended to order four. To obtain the MA (moving average) part, the AR components are calculated at first from the ARMA filter by deconvolution. Then, spectrally equivalent and minimum phase (SEMP) MA filter is identified using the Durbin algorithm at second and fourth order. Finally, the correct filter is found when the Kurtosis value of the output ARMA filter reconstituted is the closest to the Kurtosis of introduced signal. The proposed method is then tested on simulated processes and applied to real seismic data to perform blind deconvolution and obtain the reflectivity coefficients of subsoil studied.  相似文献   
998.
Multiparameter prestack seismic inversion is one of the most powerful techniques in quantitatively estimating subsurface petrophysical properties. However, it remains a challenging problem due to the nonlinearity and ill-posedness of the inversion process. Traditional regularization approach can stabilize the solution but at the cost of smoothing valuable geological boundaries. In addition, compared with linearized optimization methods, global optimization techniques can obtain better results regardless of initial models, especially for multiparameter prestack inversion. However, when solving multiparameter prestack inversion problems, the application of standard global optimization algorithms maybe limited due to the issue of high computational cost (e.g., simulating annealing) or premature convergence (e.g., particle swarm optimization). In this paper, we propose a hybrid optimization-based multiparameter prestack inversion method. In this method, we introduce a prior constraint term featured by multiple regularization functions, intended to preserve layered boundaries of geological formations; in particular, to address the problem of premature convergence existing in standard particle swarm optimization algorithm, we propose a hybrid optimization strategy by hybridizing particle swarm optimization and very fast simulating annealing to solve the nonlinear optimization problem. We demonstrate the effectiveness of the proposed inversion method by conducting synthetic test and field data application, both of which show encouraging results.  相似文献   
999.
The contamination levels of soils and water resources in Calabar, Nigeria have been investigated using resistivity (vertical electrical sounding and electrical resistivity tomography), geochemical analyses of soil and water resources and textural analysis. Sixty randomly sited VES sites were investigated in two seasons while ERT investigations were performed along four profiles. The geochemical investigations were spread across seasons in order to track seasonal changes in physico-chemical parameters: hydrogen ion concentration (pH), electrical conductivity, total dissolved solids, chloride ion (Cl?), nitrate ion (\( {\text{NO}}_{ 3}^{ - } \)), bicarbonate (\( {\text{HCO}}_{ 3}^{ - } \)), sulphate ion (\( {\text{SO}}_{ 4}^{2 - } \)), calcium ion (Ca2+), sodium ion (Na+), potassium ion (K+) and magnesium ion (Mg2+). Additionally, concentrations of ammonium, aluminium and nitrite ions in soils were determined. Results show that ionic concentrations in the sand-dominated soils and water are within permissible limits and baseline standards. The resistivities follow known trends in the area. However, at the central waste disposal site, a localised thin (< 5 m), low resistivity (< 15 Ωm) anomaly suspected to be due to contamination by leachates was observed. Comparatively, the contaminated area is also characterised by marginal increase in ionic concentrations. Strong attenuation capacities of overlying and adjoining clay/lateritic sediments and optimal design of the waste dump site probably reduced the spread of contaminants. The contaminated zone need to be closely monitored so that it does not extend to the aquifers. Hence, all strategies presently being used in managing wastes in Calabar should be sustained.  相似文献   
1000.
This paper presents a non-destructive, low-cost, photo-based, 3D reconstruction technique for characterizing geo-materials with irregular shapes of a relatively large size. After being validated against two traditional volume measurement methods, namely the vernier caliper method and the fluid displacement method for regular and irregular shapes, respectively, 3D photogrammetry was used to analyse the grout bulbs formed in laboratory pressure grouting tests. The reconstructed 3D mesh model of the sample provides accurate and detailed 3D vertex data, which allowed the volume, densification efficiency and bleeding behaviour of the grout bulbs to be analysed. Comparing the bulb section views at different grouting pressures also offers an intuitive observation of the grout development and propagation process. Moreover, the 3D vertex data and surface area included in the model are of great importance in validating numerical predictions of the pressure grouting process and analysing the interface shear resistance of grouted soil nails or anchors. Compared to existing approaches, the new 3D photogrammetry method possesses several key advantages: (a) it does not require expensive, specialized equipment; (b) samples are not destroyed or modified during testing; (c) it allows to reconstruct objects of various scales and (d) the software is public domain. Therefore, the adoption of this 3D photogrammetry method will facilitate research in the pressure grouting process and can be extended to other problems in geotechnical engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号