首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   12篇
  国内免费   2篇
测绘学   14篇
大气科学   31篇
地球物理   91篇
地质学   196篇
海洋学   43篇
天文学   105篇
综合类   1篇
自然地理   47篇
  2022年   2篇
  2021年   8篇
  2020年   5篇
  2019年   9篇
  2018年   10篇
  2017年   15篇
  2016年   11篇
  2015年   15篇
  2014年   15篇
  2013年   19篇
  2012年   14篇
  2011年   14篇
  2010年   17篇
  2009年   24篇
  2008年   25篇
  2007年   24篇
  2006年   19篇
  2005年   15篇
  2004年   32篇
  2003年   16篇
  2002年   13篇
  2001年   9篇
  2000年   19篇
  1999年   7篇
  1998年   4篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1986年   10篇
  1985年   11篇
  1984年   9篇
  1983年   7篇
  1982年   10篇
  1981年   8篇
  1980年   4篇
  1977年   3篇
  1976年   6篇
  1975年   11篇
  1972年   2篇
  1971年   2篇
  1956年   2篇
  1955年   2篇
排序方式: 共有528条查询结果,搜索用时 371 毫秒
131.
Crystallization thermometers for zircon and rutile   总被引:93,自引:20,他引:73  
Zircon and rutile are common accessory minerals whose essential structural constituents, Zr, Ti, and Si can replace one another to a limited extent. Here we present the combined results of high pressure–temperature experiments and analyses of natural zircons and rutile crystals that reveal systematic changes with temperature in the uptake of Ti in zircon and Zr in rutile. Detailed calibrations of the temperature dependencies are presented as two geothermometers—Ti content of zircon and Zr content of rutile—that may find wide application in crustal petrology. Synthetic zircons were crystallized in the presence of rutile at 1–2 GPa and 1,025–1,450°C from both silicate melts and hydrothermal solutions, and the resulting crystals were analyzed for Ti by electron microprobe (EMP). To augment and extend the experimental results, zircons hosted by five natural rocks of well-constrained but diverse origin (0.7–3 GPa; 580–1,070°C) were analyzed for Ti, in most cases by ion microprobe (IMP). The combined experimental and natural results define a log-linear dependence of equilibrium Ti content (expressed in ppm by weight) upon reciprocal temperature:
In a strategy similar to that used for zircon, rutile crystals were grown in the presence of zircon and quartz (or hydrous silicic melt) at 1–1.4 GPa and 675–1,450°C and analyzed for Zr by EMP. The experimental results were complemented by EMP analyses of rutile grains from six natural rocks of diverse origin spanning 0.35–3 GPa and 470–1,070°C. The concentration of Zr (ppm by weight) in the synthetic and natural rutiles also varies in log-linear fashion with T −1:
The zircon and rutile calibrations are consistent with one another across both the synthetic and natural samples, and are relatively insensitive to changes in pressure, particularly in the case of Ti in zircon. Applied to natural zircons and rutiles of unknown provenance and/or growth conditions, the thermometers have the potential to return temperatures with an estimated uncertainty of ±10 ° or better in the case of zircon and ±20° or better in the case of rutile over most of the temperature range of interest (∼400–1,000°C). Estimates of relative temperature or changes in temperature (e.g., from zoning profiles in a single mineral grain) made with these thermometers are subject to analytical uncertainty only, which can be better than ±5° depending on Ti or Zr concentration (i.e., temperature), and also upon the analytical instrument (e.g., IMP or EMP) and operating conditions.  相似文献   
132.
Li diffusion in zircon   总被引:2,自引:2,他引:0  
Diffusion of Li under anhydrous conditions at 1 atm and under fluid-present elevated pressure (1.0–1.2 GPa) conditions has been measured in natural zircon. The source of diffusant for 1-atm experiments was ground natural spodumene, which was sealed under vacuum in silica glass capsules with polished slabs of zircon. An experiment using a Dy-bearing source was also conducted to evaluate possible rate-limiting effects on Li diffusion of slow-diffusing REE+3 that might provide charge balance. Diffusion experiments performed in the presence of H2O–CO2 fluid were run in a piston–cylinder apparatus, using a source consisting of a powdered mixture of spodumene, quartz and zircon with oxalic acid added to produce H2O–CO2 fluid. Nuclear reaction analysis (NRA) with the resonant nuclear reaction 7Li(p,γ)8Be was used to measure diffusion profiles for the experiments. The following Arrhenius parameters were obtained for Li diffusion normal to the c-axis over the temperature range 703–1.151°C at 1 atm for experiments run with the spodumene source:
D\textLi = 7.17 ×10 - 7 exp( - 275 ±11 \textkJmol - 1 /\textRT)\textm2 \texts - 1. D_{\text{Li}} = 7.17 \times 10^{ - 7} { \exp }( - 275 \pm 11\,{\text{kJmol}}^{ - 1} /{\text{RT}}){\text{m}}^{2} {\text{s}}^{ - 1}.  相似文献   
133.
The diffusive behavior of argon in quartz was investigated with three analytical depth profiling methods: Rutherford Backscattering Spectroscopy (RBS), 213 nm laser ablation, and 193 nm (Excimer) laser ablation on the same set of experimental samples. The integration of multiple depth profiling methods, each with different spatial resolution and sensitivity, allows for the cross-checking of methods where data ranges coincide. The use of multiple methods also allows for exploration of diffusive phenomena over multiple length-scales. Samples included both natural clear rock crystal quartz and synthetic citrine quartz. Laser analysis of clear quartz was compromised by poor coupling with the laser, whereas the citrine quartz was more easily analyzed (particularly with 193 nm laser). Diffusivity measured by both RBS and 193 nm laser ablation in the outermost 0.3 μm region of citrine quartz are self-consistent and in agreement with previously published RBS data on other quartz samples (including the clear quartz measured by RBS in this study). Apparent solubilities (extrapolated surface concentrations) for citrine quartz are in good agreement between RBS, 213 nm, and 193 nm laser analyses. Deeper penetration of argon measured up to 100 μm depth with the 213 nm laser reveal contributions of a second, faster diffusive pathway, effective in transporting much lower concentrations of argon into the crystal interiors of both clear and citrine quartz. By assuming such deep diffusion is dominated by fast pathways and approximating them as a network of planar features, the net diffusive uptake can be modeled and quantified with the Whipple-LeClaire equation, yielding δDb values of 1.32 × 10−14 to 9.1 × 10−17 cm3/s. While solubility values from the measured profiles confirm suggestions that quartz has a large capacity for argon uptake (making it a potentially important sink for argon in the crust), the slow rate of lattice diffusion may limit its capability to take up argon in shorter lived geologic environments and in experiments. In such shorter-lived systems, bulk argon diffusive uptake will be dominated by the fast pathway and the quartz lattice (including natural isolated defects that may also be storing argon) may never reach its equilibrium capacity.  相似文献   
134.
Intellectual property rights (IPRs) and the transfer of low carbon technologies to developing countries have been the focus of sustained disagreement between many developed and developing country Parties to the United Nations Framework Convention on Climate Change (UNFCCC). We argue that this disagreement stems from two conflicting political discourses of economic development and low carbon technology diffusion which tend to underpin developing and developed countries’ respective motivations for becoming party to the Convention. We illustrate the policy implications of these discourses by examining empirical evidence on IPRs and low carbon technology transfer and highlight how the two discourses are based on an incomplete understanding of the role of technological capacity in either economic development or technology diffusion. This has important implication for the success of post-2012 international climate agreements.  相似文献   
135.
136.
137.
138.
139.
Sixteen sets of apatite/liquid partition coefficients (Dap/liq) for the rare earth elements (REE; La, Sm, Dy, Lu) and six values for Sr were experimentally determined in natural systems ranging from basanite to granite. The apatite + melt (glass) assemblages were obtained from starting glasses artificially enriched in REE, Sr and fluorapatite components; these were run under dry and hydrous conditions of 7.5–20 kbar and 950–1120°C in a solid-media, piston-cylinder apparatus. An SEM-equipped electron microprobe was used for subsequent measurement of REE and Sr concentrations in coexisting apatites and quenched glasses. The resulting partition coefficient patterns resemble previously determined apatite phenocryst/groundmass concentration ratios in the following respects: (1) the rare earth patterns are uniformly concave downward (i.e., the middle REE are more compatible in apatite than the light and heavy REE); (2) DREEap/liq is much higher for silicic melts than for basic ones; and (3) strontium (and therefore Eu2+) is less concentrated by apatite than are the trivalent REE. The effects of both temperature and melt composition on DREEap/liq are systematic and pronounced. At 950°C, for example, a change in melt SiO2 content from 50 to 68 wt.% causes the average REE partition coefficient to increase from ~7 to ~30. A 130°C increase in temperature, on the other hand, results in a two-fold decrease in DREEap/liq. Partitioning of Sr is insenstitive to changes in melt composition and temperature, and neither the Sr nor the REE partition coefficients appear to be affected by variations in pressure or H2O content of the melt.The experimentally determined partition coefficients can be used not only in trace element modelling, but also to distinguish apatite phenocrysts from xenocrysts in rocks. Reported apatite megacryst/host basalt REE concentration ratios [12], for example, are considerably higher than the equilibrium partition coefficients, which suggest that in this particular case the apatite is actually xenocrystic.A reversal experiment incorporated in our study yielded diffusion profiles of REE in apatite, from which we extracted a REEαCa interdiffusion coefficient of 2–4×10?14 cm2/s at 1120°C. Extrapolated downward to crustal temperatures, this low value suggests that complete REE equilibrium between felsic partial melts and residual apatite is rarely established.  相似文献   
140.
A long-term benthic study has been undertaken in the Firth of Forth to assess the environmental impact of a new sewage treatment scheme for the city of Edinburgh. The Sewage Scheme reduces the suspended solids content of the liquid effluent by approximately 60% and achieves a lowering of the concentration of materials in solution through more efficient dilution and dispersion. Marked changes in the intertidal benthic flora and fauna have been recorded along the Edinburgh coastal zone. These changes have been apparent as the decline and disappearance of populations of certain pollution indicator species and the appearance and establishment of several species previously unrecorded along the more polluted parts of the Edinburgh shoreline. Study of the sublittoral benthos has shown no deleterious effect arising from the new effluent outfall, although there does appear to be some enhancement of the fauna in the area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号