首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   26篇
  国内免费   6篇
测绘学   9篇
大气科学   25篇
地球物理   89篇
地质学   118篇
海洋学   23篇
天文学   62篇
自然地理   30篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   10篇
  2018年   7篇
  2017年   12篇
  2016年   17篇
  2015年   16篇
  2014年   15篇
  2013年   15篇
  2012年   18篇
  2011年   23篇
  2010年   13篇
  2009年   38篇
  2008年   17篇
  2007年   13篇
  2006年   12篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   11篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   5篇
  1977年   5篇
  1976年   1篇
  1974年   2篇
  1973年   4篇
  1969年   1篇
  1957年   1篇
  1898年   2篇
排序方式: 共有356条查询结果,搜索用时 812 毫秒
161.
Ecohydrological processes are a key element to consider in functional river restorations. In the framework of a LIFE+ European restoration program, we have investigated the potential for airborne thermal‐infrared remote sensing to map surface water–groundwater exchanges and to identify their driving factors. We focused our attention on anastomosing channels on an artificial island of the Upper Rhine River (Rohrschollen), where a new channel was excavated from the floodplain to reconnect an older channel in its upstream part. These hydraulic engineering works led to an increased inflow from the Rhine Canal. Here, we propose an original data treatment chain to (a) georeference the thermal‐infrared images in geographic information system based on visible images, (b) detect and correct data errors, and (c) identify and locate thermal anomalies attributed to groundwater inputs and hyporheic upwellings. Our results, which have been compared to morpho‐sedimentary data, show that groundwater upwelling in the new channel is controlled by riffle–pool sequences and bars. This channel is characterized by large bedload transport and morphodynamic activity, forming riffles and bars. In the old channel, where riffle–pool sequences no longer exist, due to impacts of engineering works and insufficient morphodynamic effects of the restoration, thermal anomalies appeared to be less pronounced. Groundwater inputs seem to be controlled by former gravel bars outcropping on the banks, as well as by local thinning of the low‐permeability clogging layer on the channel bed.  相似文献   
162.
163.
164.
This study aimed to reconstruct the history of soil development, ecosystem changes and associated erosional processes in a small mountain lacustrine basin at the decennial to millennial scale. Geochemical proxies of soil evolution were analysed in the Holocene lacustrine sediments and peats from Thyl Lake, Maurienne Valley, French Alps. Podzolization and chemical weathering processes were assessed using secondary Al- and Fe-bearing phases together with major and Rare Earth Elements (REE). The resulting proxy records, spanning ca. 4,400 years between 8.6 and 4.2 cal ka BP, indicate that progressive pedogenesis occurred after deglaciation in a relatively stable subalpine ecosystem. As shown by the associated increase in Al- and Fe-bearing phases and some REE fractions, the establishment of a mixed cembra pine ecosystem from ca. 7.2–6.5 ka BP was associated with enhanced podzolisation processes in the catchment. The progressive soil development was followed by a rapid transformation of the local environment and plant cover (the open waters of the lake were replaced by a confined peat environment) together with changes in forest fire regimes from ca. 6.8 ka BP. Depleted REE patterns, associated with low contents of secondary Al and Fe, suggest a decrease in chemical weathering and podzolization in the catchment at that time, possibly associated with local intensification of weathering and drainage processes in a relatively acidic peat environment. The higher variability of cembra pine and the increased abundance of sedge and other herbaceous plant remains in the lake sediment indicate semi-open vegetation environments from 5.7 cal ka BP onwards. Whereas fire events and plant cover appear to be significantly related, the soil processes seem primarily linked to vegetation composition, and secondarily to changes in fire regime.  相似文献   
165.
The Kerguelen Archipelago is part of an oceanic plateau with a complex history. Little work has been done on the tectonics of the onshore areas, even though the extensive outcrop renders the islands especially good for structural work. We present the results of three field campaigns and remote sensing analysis carried out in the main Kerguelen Island, around Val Travers valley and Mt Ross volcano (Central Plateau) and in the Rallier du Baty peninsula (SW part of the archipelago). We have mapped faults, fracture sets, and the location and geometry of intrusive bodies. We found that the plateau basalt lavas that make up most of the area are densely fractured, crossed by many veins, dykes and some small faults. This work provides a general framework for the structure of Kerguelen Archipelago that is dominated by 110°-striking faults and veins, dyke swarms and an alignment of recent central volcanoes, which have formed in N-S to NNW-SSE directed extensional stress field. The other structures are fractures, veins and dykes which strike 130–150°, 000° and 030–050°. They are likely related to transform faults of the Indian oceanic crust and to faults of the north Kerguelen Plateau (offshore basement of the archipelago). These buried structures were likely re-activated by a low magnitude stress field.  相似文献   
166.
The Mbengwi recent magmatic formations consist of volcanics and syenites belonging to the same magmatic episode. Lavas form a bimodal basanite-rhyolite alkaline series with a gap between 50 and 62?wt.% SiO2. Mafic lavas (basanite-hawaiite) are sodic while felsic rocks (trachyte-rhyolite-syenites) are sodi-potassic, slightly metaluminous to peralkaline. The geochemical and isotopic characteristics (0.7031?<?(87Sr/86Sr)initial?<?0.7043; 1.03?<?εNdi?<?5.17) of these rocks are similar to those of other rocks from the CVL. The main differentiation process is fractional crystallization with two trends of fractionation. Their Rb/Sr isochron age of 28.2?Ma, almost similar to 27.40?±?0.6?Ma?K/Ar age obtained in a trachyte from neighboring Bamenda Mountains system, precludes any local age migration of an hypothetic hotspot. Mafic lavas have OIB features displaying an isotopic signature similar to that of HIMU mantle source different from FOZO known as source of most parental magmas along the CVL.  相似文献   
167.
About 3 % of India’s total land surface is occupied by carbonate rocks which are mostly karstified and constitute a significant source of groundwater. The groundwater drawn from these aquifers matches the water demand of ~35 million people living in 106 districts of the country and also the water needs of livestock, irrigation and industry. The studies on karst in India carried out so far have mostly addressed geology, hydrology and groundwater contamination. A literature survey suggests that there is a need for detailed research, applying new approaches and techniques for proper carbonate aquifer identification, characterization and management. Such specific approaches will improve modeling, exploitation and protection of karst groundwater. An overview of the research carried out on groundwater resources of karst formations in India is presented, which also throws light on the protection of karst aquifers from existing anthropogenic activities such as mining and groundwater over-exploitation.  相似文献   
168.
This study aimed at analysing the effects of biological and meteorological factors on stemflow generation in a temperate mixed oak (Quercus petraea Liebl.) and beech (Fagus sylvatica L.) stand. A statistical model was developed to predict single‐event individual stemflow volume from trunk circumference and rainfall depth allowing mechanistic stemflow parameters to be deduced from the model, namely stemflow rates (SFrate), storage of water on tree organs (St) and rainfall thresholds for stemflow (RFmin). SFrate and St increased with increasing trunk circumference while RFmin was not significantly influenced by tree size. RFmin and, for a given tree size, St were higher for oak than for beech, and inversely for SFrate. For each species, RFmin was higher for the leaved season than for the leafless period, while the opposite was found for SFrate, and St was not significantly affected by the season. Increasing wind speed during rain increased SFrate, lowered RFmin and did not influence St. In contrast, St and RFmin tended, respectively, to decrease and to increase with increasing values of the ratio between the cumulated potential evaporation during the dry period preceding the rain event and the volume of the preceding rainfall (Eva pADP/Rprevious). Stemflow volume, which results from the combined effects of the previous parameters, was higher for beech than for oak and also higher during the leafless period than during the leaved period; these differences were large for the smallest events but decreased rapidly as rainfall depth increased. In addition, an enhancing and a depressing effect on stemflow volume were shown for the average wind speed during rain and for the ratio Eva pADP/Rprevious, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
169.
This study evaluates how statistical and dynamical downscaling models as well as combined approach perform in retrieving the space–time variability of near-surface temperature and rainfall, as well as their extremes, over the whole Mediterranean region. The dynamical downscaling model used in this study is the Weather Research and Forecasting (WRF) model with varying land-surface models and resolutions (20 and 50 km) and the statistical tool is the Cumulative Distribution Function-transform (CDF-t). To achieve a spatially resolved downscaling over the Mediterranean basin, the European Climate Assessment and Dataset (ECA&D) gridded dataset is used for calibration and evaluation of the downscaling models. In the frame of HyMeX and MED-CORDEX international programs, the downscaling is performed on ERA-I reanalysis over the 1989–2008 period. The results show that despite local calibration, CDF-t produces more accurate spatial variability of near-surface temperature and rainfall with respect to ECA&D than WRF which solves the three-dimensional equation of conservation. This first suggests that at 20–50 km resolutions, these three-dimensional processes only weakly contribute to the local value of temperature and precipitation with respect to local one-dimensional processes. Calibration of CDF-t at each individual grid point is thus sufficient to reproduce accurately the spatial pattern. A second explanation is the use of gridded data such as ECA&D which smoothes in part the horizontal variability after data interpolation and damps the added value of dynamical downscaling. This explains partly the absence of added-value of the 2-stage downscaling approach which combines statistical and dynamical downscaling models. The temporal variability of statistically downscaled temperature and rainfall is finally strongly driven by the temporal variability of its forcing (here ERA-Interim or WRF simulations). CDF-t is thus efficient as a bias correction tool but does not show any added-value regarding the time variability of the downscaled field. Finally, the quality of the reference observation dataset is a key issue. Comparison of CDF-t calibrated with ECA&D dataset and WRF simulations to local measurements from weather stations not assimilated in ECA&D, shows that the temporal variability of the downscaled data with respect to the local observations is closer to the local measurements than to ECA&D data. This highlights the strong added-value of dynamical downscaling which improves the temporal variability of the atmospheric dynamics with regard to the driving model. This article highlights the benefits and inconveniences emerging from the use of both downscaling techniques for climate research. Our goal is to contribute to the discussion on the use of downscaling tools to assess the impact of climate change on regional scales.  相似文献   
170.
Crystalline aquifers of semi-arid southern India represent a vital water resource for farming communities. A field study is described that characterizes the hydrodynamic functioning of intensively exploited crystalline aquifers at local scale based on detailed well monitoring during one hydrological year. The main results show large water-table fluctuations caused by monsoon recharge and pumping, high spatial variability in well discharges, and a decrease of well yields as the water table decreases. Groundwater chemistry is also spatially variable with the existence of aquifer compartments within which mixing occurs. The observed variability and compartmentalization is explained by geological heterogeneities which play a major role in controlling groundwater flow and connectivity in the aquifer. The position of the water table within the fracture network will determine the degree of connectivity between aquifer compartments and well discharge. The presented aquifer conceptual model suggests several consequences: (1) over-exploitation leads to a drop in well discharge, (2) intensive pumping may contribute to the hydraulic containment of contaminants, (3) groundwater quality is highly variable even at local scale, (4) geological discontinuities may be used to assist in the location of drinking-supply wells, (5) modeling should integrate threshold effects due to water-table fluctuations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号