首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
  国内免费   2篇
测绘学   2篇
大气科学   5篇
地球物理   4篇
地质学   31篇
海洋学   2篇
天文学   7篇
自然地理   5篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1997年   1篇
  1994年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有56条查询结果,搜索用时 0 毫秒
51.
In situ cosmogenic 14C (in situ 14C) analysis from quartz‐bearing rocks is a novel isotopic tool useful for quantifying recent surface exposure histories (up to ~25 ka). It is particularly powerful when combined with longer‐lived cosmogenic isotopes such as 10Be. Recent advances in the extraction of in situ 14C from quartz now permit the routine application of this method. However, only a few experiments to calibrate the production rate of in situ 14C in quartz have been published to date. Here, we present a new in situ 14C production rate estimate derived from a well‐dated debris flow deposit in the Southern Alps, New Zealand, previously used to calibrate 10Be production rates. For example, based on a geomagnetic implementation of the Lal/Stone scaling scheme we derive a spallogenic production rate of 11.4 ± 0.9 atoms 14C (g quartz)?1 a?1 and a 14C/10Be spallogenic production rate ratio of 3.0 ± 0.2. The results are comparable with production rates from previous calibrations in the northern hemisphere. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
52.
Forests can decrease the risk of shallow landslides by mechanically reinforcing the soil and positively influencing its water balance. However, little is known about the effect of different forest structures on slope stability. In the study area in St Antönien, Switzerland, we applied statistical prediction models and a physically‐based model for spatial distribution of root reinforcement in order to quantify the influence of forest structure on slope stability. We designed a generalized linear regression model and a random forest model including variables describing forest structure along with terrain parameters for a set of landslide and control points facing similar slope angle and tree coverage. The root distribution measured at regular distances from seven trees in the same study area was used to calibrate a root distribution model. The root reinforcement was calculated as a function of tree dimension and distance from tree with the root bundle model (RBMw). Based on the modelled values of root reinforcement, we introduced a proxy‐variable for root reinforcement of the nearest tree using a gamma distribution. The results of the statistical analysis show that variables related to forest structure significantly influence landslide susceptibility along with terrain parameters. Significant effects were found for gap length, the distance to the nearest trees and the proxy‐variable for root reinforcement of the nearest tree. Gaps longer than 20 m critically increased the susceptibility to landslides. Root reinforcement decreased with increasing distance from trees and is smaller in landslide plots compared to control plots. Furthermore, the influence of forest structure strongly depends on geomorphological and hydrological conditions. Our results enhance the quantitative knowledge about the influence of forest structure on root reinforcement and landslide susceptibility and support existing management recommendations for protection against gravitational natural hazards. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
53.
Salt and ice crystallisation in porous sandstones   总被引:1,自引:0,他引:1  
Salt and ice crystallisation in the pore spaces causes major physical damage to natural building stones. The damaging effect of these processes can be traced back to physically induced stress inside of the rock while crystallizing. The increasing scientific research done during the past century has shown that there are numerous parameters that have an influence on the weathering resulting from these processes. However, the working mechanisms of the stress development within the rock and its material dependency are still subject to discussion. This article gives an overview of salt and ice weathering. Additionally, laboratory results of various sandstones examined are presented. Salt crystallisation tests and freeze/thaw tests were done to obtain information about how crystallisation weathering depends on material characteristics such as pore space, water transportation, and mechanical features. Simultaneous measuring of the length alternating during the salt and ice crystallisation has revealed detailed information on the development of crystal in the pore spaces as well as the development of stress. These findings can help to understand the damaging mechanisms.  相似文献   
54.
55.
This study presents 2D seismic reflection data, seismic velocity analysis, as well as geochemical and isotopic porewater compositions from Opouawe Bank on New Zealand’s Hikurangi subduction margin, providing evidence for essentially pure methane gas seepage. The combination of geochemical information and seismic reflection images is an effective way to investigate the nature of gas migration beneath the seafloor, and to distinguish between water advection and gas ascent. The maximum source depth of the methane that migrates to the seep sites on Opouawe Bank is 1,500–2,100 m below seafloor, generated by low-temperature degradation of organic matter via microbial CO2 reduction. Seismic velocity analysis enabled identifying a zone of gas accumulation underneath the base of gas hydrate stability (BGHS) below the bank. Besides structurally controlled gas migration along conduits, gas migration also takes place along dipping strata across the BGHS. Gas migration on Opouawe Bank is influenced by anticlinal focusing and by several focusing levels within the gas hydrate stability zone.  相似文献   
56.
Discovery of the remains of belemnites referred to the Hibolithes sp. from the Jurassic–Cretaceous Pedawan Formation in Sarawak, on the island of Borneo(Malaysia) comprises four fragments of belemnite rostra. The specimens are characterized by multiple fractures and vein filling. Two fragments measuring about 130 mm are relatively intact, with only part of the alveolar region missing; a third piece represents the middle part of a rostrum, and the fourth specimen is too fragmentary to be assigned to any specific part of the rostrum. Based on specimen characteristics, a Tithonian–Hauterivian age is plausible. The sedimentary succession that yielded the belemnite material comprises thick shale that reflects the Te division of Bouma sequence. The occurrence of a Hibolithes taxon in the uppermost Jurassic to lowermost Cretaceous Pedawan Formation sediments in Borneo reflects a near to global palaeobiogeographic distribution of this genus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号