首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   6篇
  国内免费   4篇
测绘学   2篇
大气科学   23篇
地球物理   24篇
地质学   72篇
海洋学   6篇
天文学   11篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   11篇
  2012年   10篇
  2011年   8篇
  2010年   7篇
  2009年   14篇
  2008年   6篇
  2007年   9篇
  2006年   14篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  1998年   2篇
  1995年   3篇
  1994年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有141条查询结果,搜索用时 93 毫秒
11.
Analyses of a 500-year control integration of the global coupled atmosphere–sea ice–ocean model ECHAM5.0/MPI-OM show a high variability in the ice export through Fram Strait on interannual to decadal timescales. This variability is mainly determined by variations in the sea level pressure gradient across Fram Strait and thus geostrophic wind stress. Ice thickness anomalies, formed at the Siberian coast and in the Chukchi Sea, propagate across the Arctic to Fram Strait and contribute to the variability of the ice export on a timescale of about 9 years. Large anomalies of the ice export through Fram Strait cause fresh water signals, which reach the Labrador Sea after 1–2 years and lead to significant changes in the deep convection. The associated anomalies in ice cover and ocean heat release have a significant impact on air temperature in the Labrador Sea and on the large-scale atmospheric circulation. This affects the sea ice transport and distribution in the Arctic again. Sensitivity studies, simulating the effect of large ice exports through Fram Strait, show that the isolated effect of a prescribed ice/fresh water anomaly is very important for the climate variability in the Labrador Sea. Thus, the ice export through Fram Strait can be used for predictability of Labrador Sea climate up to 2 years in advance.  相似文献   
12.
A resin nodule was found in glauconite-rich detrital sediments of the Cretaceous Garschella Formation (Aptian to Albian) outcropping at Langer Köchel (Bavaria, S Germany). Gas chromatographic and mass spectrometric analyses of the fossil resin revealed dealkylation and the total defunctionalisation of its polycyclic constituents. Besides many unspecific components a specific one, agathalene, has survived. Agathalene also presents a strongly degraded product, but may have been derived from its natural precursor agathic acid, which is a very specific constituent (biomarker) of recent and fossil kauri resin. Although agathalene is a far less specific secondary biomarker, it indicates the botanic origin of the fossil resin nodule. Besides other potential producers of agathic acid, precursors of the present-day conifer species Agathis dammara and A. australis were distributed in a wider palaeophytogeographic range than today and might have been the botanical source of kauri resin. In view of the east–west directed Early Cretaceous surface current system of the Tethys ocean, the palaeogeographic provenance of the Werdenfels resin nodule probably was a mainland positioned further to the east or southeast of the Helvetic shelf, to where it was transported probably by driftwood of the resin-producing Agathis sp.  相似文献   
13.
New single‐grain 40Ar/39Ar detrital white‐mica ages from the Lulehe section at the eastern Qaidam Basin yield uniform Permian ages between 250 ± 3 and 279 ± 3 Ma throughout the whole Cenozoic sequence. This is inconsistent with the present hinterland, which is composed of early Palaeozoic metamorphic units with subordinate early Palaeozoic and few Permian granites. The new data indicate that Permian tectonic units are likely more widespread at the north‐eastern margin of the Tibetan plateau as known at present, particularly within the Qilian Mountains. The preferred explanation is that the Qaidam block represents a rigid indenter, which indented during late Tertiary times into early Palaeozoic orogenic units. This is consistent with recent findings of a NW‐trending sinistral Permian ductile shear zone and a dextral, NW‐trending Tertiary fault system close to the north‐eastern margin of the Qaidam Basin.  相似文献   
14.
In projections of twenty-first century climate, Arctic sea ice declines and at the same time exhibits strong interannual anomalies. Here, we investigate the potential to predict these strong sea-ice anomalies under a perfect-model assumption, using the Max-Planck-Institute Earth System Model in the same setup as in the Coupled Model Intercomparison Project Phase 5 (CMIP5). We study two cases of strong negative sea-ice anomalies: a 5-year-long anomaly for present-day conditions, and a 10-year-long anomaly for conditions projected for the middle of the twenty-first century. We treat these anomalies in the CMIP5 projections as the truth, and use exactly the same model configuration for predictions of this synthetic truth. We start ensemble predictions at different times during the anomalies, considering lagged-perfect and sea-ice-assimilated initial conditions. We find that the onset and amplitude of the interannual anomalies are not predictable. However, the further deepening of the anomaly can be predicted for typically 1 year lead time if predictions start after the onset but before the maximal amplitude of the anomaly. The magnitude of an extremely low summer sea-ice minimum is hard to predict: the skill of the prediction ensemble is not better than a damped-persistence forecast for lead times of more than a few months, and is not better than a climatology forecast for lead times of two or more years. Predictions of the present-day anomaly are more skillful than predictions of the mid-century anomaly. Predictions using sea-ice-assimilated initial conditions are competitive with those using lagged-perfect initial conditions for lead times of a year or less, but yield degraded skill for longer lead times. The results presented here suggest that there is limited prospect of predicting the large interannual sea-ice anomalies expected to occur throughout the twenty-first century.  相似文献   
15.
A mechanism contributing to centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is tested with multi-millennial control simulations of several coupled general circulation models (CGCMs). These are a substantially extended integration of the 3rd Hadley Centre Coupled Climate Model (HadCM3), the Kiel Climate Model (KCM), and the Max Plank Institute Earth System Model (MPI-ESM). Significant AMOC variability on time scales of around 100?years is simulated in these models. The centennial mechanism links changes in the strength of the AMOC with oceanic salinities and surface temperatures, and atmospheric phenomena such as the Intertropical Convergence Zone (ITCZ). 2 of the 3 models reproduce all aspects of the mechanism, with the third (MPI-ESM) reproducing most of them. A comparison with a high resolution paleo-proxy for Sea Surface Temperatures (SSTs) north of Iceland over the last 4,000?years, also linked to the ITCZ, suggests that elements of this mechanism may also be detectable in the real world.  相似文献   
16.
One possibility to explore the subsurface layers of icy bodies is to use a probe with a “hot tip", which is able to penetrate ice layers by melting. Such probes have been built and used in the past for the exploration of terrestrial polar ice sheets and may also become useful tools to explore other icy layers in the Solar System. Examples for such layers are the polar areas of Mars or the icy crust of Jupiter’s moon Europa. However, while on Earth a heated probe launched into an ice sheet always causes melting with subsequent refreezing, the behaviour of such a probe in a low pressure environment is quite different. We report on the results of some experiments with a simple “melting probe" prototype with two different kinds of hot tips in a vacuum environment. For one of the tips the probe moved into two types of ice samples: (i) compact water ice and (ii) porous water ice with a snow (firn) like texture. It was also found that the penetration behaviour was basically different for the two sample types even when the same kind of tip was used. While in the porous sample the ice was only subliming, the phase changes occurring during the interaction of the tip with the compact ice are much more complex. Here alternating phases of melting and sublimation occur. The absence of the liquid phase has severe consequences on the performance of a “melting probe" under vacuum conditions: In this environment we find a high thermal resistance between the probe surface and the underlying ice. Therefore, only a low percentage of the heat that is generated in the tip is used to melt or sublime the ice, the bulk of the power is transferred towards the rear end of the probe. This is particularly a problem in the initial phases of an ice penetration experiment, when the probe has not yet penetrated the ice over its whole length. In the compact ice sample, phases could be observed, where a high enough gas pressure had built up locally underneath the probe, so that melting becomes possible. Only during these melting periods the thermal contact between the probe and the ice is good and in consequence the melting probe works effectively.  相似文献   
17.
Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 108 atoms. Under these conditions, deviations due to various suggested alternative models to quantum theory would become visible. These models have been suggested to harmonize the paradoxical quantum phenomena both with the classical macroscopic world and with our notion of Minkowski space-time. The second scientific objective of MAQRO, which is addressed by the experiment CASE, is to demonstrate the performance of a novel type of inertial sensor based on optically trapped microspheres. CASE is a technology demonstrator that shows how the modular design of DECIDE allows to easily incorporate it with other missions that have compatible requirements in terms of spacecraft and orbit. CASE can, at the same time, serve as a test bench for the weak equivalence principle, i.e., the universality of free fall with test-masses differing in their mass by 7 orders of magnitude.  相似文献   
18.
Instability structures, synsedimentary faults and turbidites have been studied in the Lower Pliensbachian succession of Saint-Michel-en-Beaumont, belonging to the Taillefer block, an ancient half-graben emplaced during the Liassic Tethyan rifting. Geometrical and mechanical analyses demonstrate that the instability structures occurred thanks to movements along spineless synsedimentary normal faults, when the turbiditic and limestone layers were already case-hardened and partly fractured by tension gashes even when the mudstones were still unlithified. Both the tension gashes and the synsedimentary faults are homogeneous in strike with the major regional faults and are in good agreement with the regional direction of extension for this period. The characters of the turbiditic beds, with erosive base, graded bedding, and incomplete Bouma sequence, are in favour of a seismic origin. Instability structures, spineless synsedimentary faults and turbiditic inflows are thus considered as seismites and interpreted as the result of high seismicity periods including some events with M > 5 in the general extensive ambiance of the Liassic Tethyan rifting. The analysis of the geometrical relationships between all these sedimentary features allows to distinguish the successive stage of occurrence of an instability structure, from the sedimentation of alternating marls and limestones, and sudden turbiditic inflows, then early case-hardening of the turbidites, until the important seismotectonic event generating the spineless normal faults, themselves triggering the fall of indurated blocks and locally the forming of breccias. The Ornon Fault, which constitutes the border of the Taillefer block, 15 km eastward, played a major role during the Liassic sedimentation and may represent the major seismic fault related to the seismites occurrence in the Beaumont basin.  相似文献   
19.
Avalanche risk assessment for mountain roads: a case study from Iceland   总被引:2,自引:0,他引:2  
This paper presents an assessment of the avalanche hazard potential and the resulting risks on mountain roads for a 38.7-km-long section of road no 76 (Siglufjarearvegur) in northern Iceland following a regional scale approach developed in the Alps. The assessment of the individual avalanche death risk proved applicable to distinguish areas of avalanche hazard with a risk above the accepted level, which should be given priority in following detailed investigations and the planning of possible protective measures, from road sections where the avalanche death risk is low and accepted according to international practice. The cumulative individual and collective avalanche death risks in the investigated road section provide a comparable measure for assessing the avalanche hazard both within the Icelandic public road network and on an international scale. The case study on road no 76 in northern Iceland shows that a standardised regional scale risk-based approach is practical to determine, analyse and assess the avalanche hazard situation on mountain roads in Iceland and guarantees comprehensible, reproducible and comparable results as a basis for a sustainable planning of measures.  相似文献   
20.
In the context of natural hazard-related risk analyses, different concepts and comprehensions of the term risk exist. These differences are mostly subjected to the perceptions and historical backgrounds of the different scientific disciplines and results in a multitude of methodological concepts to analyse risk. The target-oriented selection and application of these concepts depend on the specific research object which is generally closely connected to the stakeholders’ interests. An obvious characteristic of the different conceptualizations is the immanent various comprehensions of vulnerability. As risk analyses from a natural scientific-technical background aim at estimating potential expositions and consequences of natural hazard events, the results can provide an appropriate decision basis for risk management strategies. Thereby, beside the preferably addressed gravitative and hydrological hazards, seismo-tectonical and especially meteorological hazard processes have been rarely considered within multi-risk analyses in an Alpine context. Hence, their comparative grading in an overall context of natural hazard risks is not quantitatively possible. The present paper focuses on both (1) the different concepts of the natural hazard risk and especially their specific expressions in the context of vulnerability and (2) the exemplary application of the natural scientific-technical risk concepts to analyse potential extreme storm losses in the Austrian Province of Tyrol. Following the corresponding general risk concept, the case study first defines the hazard potential, second estimates the exposures and damage potentials on the basis of an existing database of the stock of elements and values, and third analyses the so-called Extreme Scenario Losses (ESL) considering the structural vulnerability of the potentially affected elements at risk. Thereby, it can be shown that extreme storm events can induce losses solely to buildings and inventory in the range of EUR 100–150 million in Tyrol. However, in an overall context of potential extreme natural hazard events, the storm risk can be classified with a moderate risk potential in this province.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号