首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8547篇
  免费   345篇
  国内免费   97篇
测绘学   209篇
大气科学   631篇
地球物理   2003篇
地质学   3062篇
海洋学   798篇
天文学   1222篇
综合类   20篇
自然地理   1044篇
  2021年   88篇
  2020年   115篇
  2019年   118篇
  2018年   175篇
  2017年   172篇
  2016年   236篇
  2015年   200篇
  2014年   204篇
  2013年   493篇
  2012年   262篇
  2011年   317篇
  2010年   298篇
  2009年   348篇
  2008年   338篇
  2007年   290篇
  2006年   329篇
  2005年   249篇
  2004年   298篇
  2003年   272篇
  2002年   271篇
  2001年   175篇
  2000年   187篇
  1999年   150篇
  1998年   155篇
  1997年   113篇
  1996年   123篇
  1995年   119篇
  1994年   134篇
  1993年   119篇
  1992年   117篇
  1991年   110篇
  1990年   107篇
  1989年   90篇
  1988年   87篇
  1987年   116篇
  1986年   104篇
  1985年   165篇
  1984年   194篇
  1983年   144篇
  1982年   131篇
  1981年   127篇
  1980年   112篇
  1979年   132篇
  1978年   125篇
  1977年   113篇
  1976年   100篇
  1975年   96篇
  1974年   72篇
  1973年   89篇
  1972年   54篇
排序方式: 共有8989条查询结果,搜索用时 500 毫秒
141.
Transport of warm, nutrient-rich Circumpolar Deep Water (CDW) onto Antarctic continental shelves and coastal seas has important effects on physical and biological processes. The present study investigates the locations of this transport and its dynamics in the Ross Sea with a high-resolution three-dimensional numerical model. The model circulation is forced by daily wind stress along with heat and salt fluxes calculated from atmospheric climatologies by bulk formulae. All surface fluxes are modified by an imposed climatological ice cover. Waters under the Ross Ice Shelf are not included explicitly, but their effect on temperature and salinity is imposed in a buffer zone at the southern end of the model domain. A simple nutrient uptake is calculated based on the climatological chlorophyll distribution and Monod uptake kinetics.Model circulation is strongly affected by bottom topography, due to weak stratification, and agrees with schematics of the general flow and long-term current measurements except near the southern boundary. The sea-surface temperature is similar to satellite estimates except that the warmest simulated temperatures are slightly higher than observations. There is a significant correlation between the curvature of the shelf break and the transport across the shelf break. A momentum term balance shows that momentum advection helps to force flow across the shelf break in specific locations due to the curvature of the bathymetry (that is, the isobaths curve in front of the flow). For the model to create a strong intrusion of CDW onto the shelf, it appears two mechanisms are necessary. First, CDW is driven onto the shelf at least partially due to momentum advection and the curvature of the shelf break; then, the general circulation on the shelf takes the CDW into the interior.  相似文献   
142.
Aquatic surface microlayer contamination in chesapeake bay   总被引:1,自引:0,他引:1  
The aquatic surface microlayer (SMIC), 50 μm thick, serves as a concentration point for metal and organic contaminants that have low water solubility or are associated with floatable particles. Also, the eggs and larvae of many fish and shellfish species float on, or come in contact with, the water surface throughout their early development. The objectives of this study were (1) to determine the present degree of aquatic surface microlayer pollution at selected sites in Chesapeake Bay, and (2) to provide a preliminary evaluation of sources contributing to any observed contamination.Twelve stations located in urban bays, major rivers, and the north central bay were sampled three times, each at 5-day intervals during May 1986. Samples of 1.4–4.1 each were collected from the upper 30–60-μm water surface (surface microlayer, SMIC) using a Teflon-coated rotating drum microlayer sampler. One sample of subsurface water was collected in the central bay.At all stations, concentrations of metals, alkanes, and aromatic hydrocarbons in the SMIC were high compared with one bulk-water sample and with typical concentrations in water of Chesapeake Bay and elsewhere. SMIC contamination varied greatly among the three sampling times, but high mean contaminant levels (total polycyclic aromatic hydrocarbons, 1.9–6.2 μg 1−1; Pb, 4.9–24 μg 1−1; Cu, 4–16 μg 1−1; and Zn, 34–59 μg 1−1) were found at the upper Potomac and northern bay sites. Three separate areas were identified on the basis of relative concentrations of different aromatic hydrocarbons in SMIC samples - the northern bay, the Potomac River, and the cleaner southern and eastern portions of the sampling area.Suspected sources of surface contamination include gasoline and diesel fuel combustion, coal combustion, and petroleum product releases. Concentrations of metals and hydrocarbons, at approximately half the stations sampled, are sufficient to pose a threat to the reproductive stages of some fish and shellfish. Sampling and analysis of the surface microlayer provides a sensitive tool for source identification and monitoring of potentially harmful aquatic pollution.  相似文献   
143.
144.
145.
146.
Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m−2, 0.46 g N m−2, and 0.007 g P m−2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in surface water runoff from the P-limited Everglades and increased advection of relatively P-rich Gulf of Mexico (GOM) waters into Florida Bay. Comparison of measured nutrient flux from Everglades surface water inputs from this study with published estimates of other sources of nutrients to Florida Bay (i.e. atmospheric deposition, anthropogenic inputs from the Florida Keys, advection from the GOM) show that Everglades runoff represents only 2% of N inputs and 0.5% of P input to Florida Bay.  相似文献   
147.
148.
A linear decrease in dissolved organic carbon and nitrogen with increasing salinity offshore from the Georgia coast suggests that organic nitrogen compounds contributed to coastal waters by rivers are stable during the period (2–3 months) of their transfer over the continental shelf. While the C/N ratio decreased with distance from shore, total dissolved organic nitrogen (DON), total amino nitrogen, and primary amino nitrogen showed similar relative decreases, suggesting that nitrogen is associated with refractory organic compounds. Measured amino nitrogen accounted for about 20% of the total DON, leaving about 80% of the organic nitrogen undefined.  相似文献   
149.
150.
ABSTRACT

Instream processes alter the concentration and bioavailability of nutrients as they are transported downstream. By relating primary production and periphyton composition to changes in nutrient concentration in a gravel-bed river this study made inferences about recycling and attenuation. Where dissolved inorganic nitrogen (DIN) was abundant, concentrations decreased linearly with distance but by less than required to meet the nitrogen demand of primary production. Where DIN was barely measurable photosynthesis was reduced but only by 50%. We infer that recycling sustained primary production even when DIN concentrations were negligibly small. One implication is that DIN removal underestimates attenuation. Further experimental research on recycling and improved modelling is required to better quantify the length of streams adversely affected by nutrients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号