首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1185篇
  免费   73篇
  国内免费   23篇
测绘学   26篇
大气科学   79篇
地球物理   357篇
地质学   418篇
海洋学   98篇
天文学   156篇
综合类   6篇
自然地理   141篇
  2024年   2篇
  2023年   4篇
  2022年   4篇
  2021年   23篇
  2020年   30篇
  2019年   22篇
  2018年   40篇
  2017年   34篇
  2016年   49篇
  2015年   50篇
  2014年   41篇
  2013年   73篇
  2012年   66篇
  2011年   71篇
  2010年   61篇
  2009年   76篇
  2008年   80篇
  2007年   70篇
  2006年   58篇
  2005年   51篇
  2004年   52篇
  2003年   35篇
  2002年   34篇
  2001年   22篇
  2000年   15篇
  1999年   17篇
  1998年   20篇
  1997年   15篇
  1996年   15篇
  1995年   10篇
  1994年   9篇
  1993年   12篇
  1992年   14篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   7篇
  1986年   9篇
  1985年   15篇
  1984年   7篇
  1983年   10篇
  1982年   8篇
  1981年   6篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1281条查询结果,搜索用时 15 毫秒
91.
Historical changes in the level of Lake Bosumtwi, Ghana, have been simulated using a catchment‐scale hydrological model in order to assess the importance of changes in climate and land use on lake water balance on a monthly basis for the period 1939–2004. Several commonly used models for computing evaporation in data‐sparse regions are compared, including the Penman, the energy budget, and the Priestley–Taylor methods. Based on a comparison with recorded lake level variations, the model with the energy‐budget evaporation model subcomponent is most effective at reproducing observed lake level variations using regional climate records. A sensitivity analysis using this model indicates that Lake Bosumtwi is highly sensitive to changes in precipitation, cloudiness and temperature. However, the model is also sensitive to changes in runoff related to vegetation, and this factor needs to be considered in simulating lake level variations. Both interannual and longer‐term changes in lake level over the last 65 years appear to have been caused primarily by changes in precipitation, though the model also suggests that the drop in lake level over the last few decades has been moderated by changes in cloudiness and temperature over that time. Based on its effectiveness at simulating the magnitude and rate of lake level response to changing climate over the historical record, this model offers a potential future opportunity to examine the palaeoclimatic factors causing past lake level fluctuations preserved in the geological record at Lake Bosumtwi. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
92.
This work presents the first synthesis of secular to millenary morphological evolutions and stratigraphy of a wave-dominated estuary, the Arcachon lagoon, from a combination of unpublished bathymetric maps (1865 and 2001), core results and high-resolution seismic profiles recorded for the first time in this lagoon. The Arcachon lagoon is located on the Atlantic coast of France, facing the wave-dominated shelf of the Bay of Biscay. It is a mesotidal semi-enclosed environment of about 160 km2.The sediment budget of the Arcachon lagoon was computed by subtracting the 1865 bathymetric map from that of 2001. The computed volume difference is low (?9.9±35×106 m3 in 136 yrs) and is the result of the balance between erosion and accretion that occurs within tidal channels and tidal flats, respectively. This morphological evolution pattern is explained by low sediment supply and also by the tidal distortion resulting from the morphology of the lagoon. Deep channels connected to the inlet are dominated by ebb currents inducing erosion. Tidal flats and transverse channels display weak or flood-dominated tidal currents leading to the deposition of silts. The areas of tidal flat siltation locally correlate with the presence of oyster farms, suggesting the influence of Man on the lagoon sediment-fill. Transverse channel-infill is related to weak tidal currents resulting from the hydraulically inefficient orientation of these channels which served as an ancient drainage network.Evidence for tidal channel-infill and channel abandonment are also provided by seismic profiling and cores. The upper stratigraphic succession of the lagoon (about 10 m thick) includes four main stratigraphic units dominated by channel-fills. The two lower units (around 7500–2800 yrs BP) display tabular-shape sandy channels interpreted to be records of the open estuarine phase of the Arcachon lagoon. The two upper units (around 2800 yrs BP to present-day) display U-shaped mixed sand-and-mud channel-fills interpreted to be records of the closure of the lagoon. Given that the basal estuarine units are transgressive and the upper lagoonal units are regressive, the main stratigraphic change at around 2800 yrs BP is interpreted as being the maximum flooding surface (MFS). This late MFS is explained by the low sediment supply. It is proposed that the transition from the estuarine to the lagoonal phase is related to the development of the Cap-Ferret spit in response to an increase in the ratio between wave power to tide power. This change in wave-to-tide ratio may be triggered by wave power increase following the Subboreal/Subatlantic climate instability or a decrease in tide power following a decrease in tidal prism related to the lagoon sediment-fill.Thus, the evolution of the Arcachon lagoon over the last millenaries was mainly controlled by its spit development, leading to a wave-dominated estuary in terms of its geomorphology. Once it was partially closed, extensive mud flats developed in the lagoon which became ebb-dominated.  相似文献   
93.
94.
95.
96.
97.
98.
We present a general recipe for constructing N -body realizations of galaxies comprising near spherical and disc components. First, an exact spherical distribution function for the spheroids (halo and bulge) is determined, such that it is in equilibrium with the gravitational monopole of the disc components. Second, an N -body realization of this model is adapted to the full disc potential by growing the latter adiabatically from its monopole. Finally, the disc is sampled with particles drawn from an appropriate distribution function, avoiding local-Maxwellian approximations. We performed test simulations and find that the halo and bulge radial density profile very closely match their target model, while they become slightly oblate due to the added disc gravity. Our findings suggest that vertical thickening of the initially thin disc is caused predominantly by spiral and bar instabilities, which also result in a radial re-distribution of matter, rather than scattering off interloping massive halo particles.  相似文献   
99.
100.
Achromatic breaks in afterglow light curves of gamma-ray bursts (GRBs) arise naturally if the product of the jet’s Lorentz factor γ and opening angle Θj satisfies γΘj?1 at the onset of the afterglow phase, i.e., soon after the conclusion of the prompt emission. Magnetohydrodynamic (MHD) simulations of collimated GRB jets generally give γΘj?1, suggesting that MHD models may be inconsistent with jet breaks. We work within the collapsar paradigm and use axisymmetric relativistic MHD simulations to explore the effect of a finite stellar envelope on the structure of the jet. Our idealized models treat the jet–envelope interface as a collimating rigid wall, which opens up outside the star to mimic loss of collimation. We find that the onset of deconfinement causes a burst of acceleration accompanied by a slight increase in the opening angle. In our fiducial model with a stellar radius equal to 104.5 times that of the central compact object, the jet achieves an asymptotic Lorentz factor γ500 far outside the star and an asymptotic opening angle Θj?0.04rad?2°, giving γΘj20. These values are consistent with observations of typical long-duration GRBs, and explain the occurrence of jet breaks. We provide approximate analytic solutions that describe the numerical results well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号