首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1508篇
  免费   92篇
  国内免费   24篇
测绘学   35篇
大气科学   92篇
地球物理   448篇
地质学   556篇
海洋学   190篇
天文学   192篇
综合类   7篇
自然地理   104篇
  2023年   3篇
  2022年   17篇
  2021年   40篇
  2020年   49篇
  2019年   41篇
  2018年   56篇
  2017年   62篇
  2016年   88篇
  2015年   54篇
  2014年   84篇
  2013年   110篇
  2012年   68篇
  2011年   95篇
  2010年   90篇
  2009年   113篇
  2008年   96篇
  2007年   64篇
  2006年   64篇
  2005年   57篇
  2004年   47篇
  2003年   28篇
  2002年   39篇
  2001年   22篇
  2000年   17篇
  1999年   26篇
  1998年   31篇
  1997年   12篇
  1996年   11篇
  1995年   6篇
  1994年   14篇
  1993年   11篇
  1992年   6篇
  1991年   6篇
  1990年   11篇
  1989年   7篇
  1988年   4篇
  1987年   9篇
  1986年   3篇
  1985年   7篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   7篇
  1977年   4篇
  1976年   2篇
  1974年   9篇
  1973年   3篇
  1970年   3篇
排序方式: 共有1624条查询结果,搜索用时 31 毫秒
61.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   
62.
This paper presents a new analytical criterion for brittle failure of rocks and heavily over-consolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as half of the critical distance. This fracture criterion is known as the point method, and is part of the theory of critical distances, which is utilised in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, σ 0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, σ c and σ t. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (σ c/σ t = 3–50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low-confining stresses.  相似文献   
63.
64.
65.
Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11–20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.  相似文献   
66.
67.
The town of Santa Teresa (Cusco Region, Peru) has been affected by several large debris-flow events in the recent past, which destroyed parts of the town and resulted in a resettlement of the municipality. Here, we present a risk analysis and a risk management strategy for debris-flows and glacier lake outbursts in the Sacsara catchment. Data scarcity and limited understanding of both physical and social processes impede a full quantitative risk assessment. Therefore, a bottom-up approach is chosen in order to establish an integrated risk management strategy that is robust against uncertainties in the risk analysis. With the Rapid Mass Movement Simulation (RAMMS) model, a reconstruction of a major event from 1998 in the Sacsara catchment is calculated, including a sensitivity analysis for various model parameters. Based on the simulation results, potential future debris-flows scenarios of different magnitudes, including outbursts of two glacier lakes, are modeled for assessing the hazard. For the local communities in the catchment, the hazard assessment is complemented by the analysis of high-resolution satellite imagery and fieldwork. Physical, social, economic, and institutional vulnerability are considered for the vulnerability assessment, and risk is eventually evaluated by crossing the local hazard maps with the vulnerability. Based on this risk analysis, a risk management strategy is developed, consisting of three complementing elements: (i) standardized risk sheets for the communities; (ii) activities with the local population and authorities to increase social and institutional preparedness; and (iii) a simple Early Warning System. By combining scientific, technical, and social aspects, this work is an example of a framework for an integrated risk management strategy in a data scarce, remote mountain catchment in a developing country.  相似文献   
68.
Bogotá is located in the central Andean region of Colombia, which is frequently affected by landslide processes. These processes are mostly triggered during the rainy season in the city. This fact remarks the importance of determining what rain-derived parameters (e.g. intensity, antecedent rain, daily rain) are better related with the occurrence of landslides. For this purpose, the linear discriminant analysis (LDA), a technique derived from multivariate statistics, was used. The application of this type of analysis led to obtain simple mathematical functions that represent the probability of occurrence of landslides in Bogotá. The functions also allow to identify the most relevant variables derived from records of rainfall linked to the generation of landslides. A proof of concept using the proposed methodology was done using historic rainfall data from a 9-km2 area of homogenous climatology and geomorphology in the south part of Bogotá. Landslides needed to be grouped for the LDA. Each one of these grouping categories represents landslides that occurred in similar geomorphologic conditions. Another set of events with no landslides was generated synthetically. Results of the proof of concept show that rainfall parameters such as normalized rainfall intensity I MAP, normalized daily rainfall R MAP and rainy-days normal RDN have the best statistical correlation with the landslides observed in the zone of analysis.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号