首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   11篇
测绘学   1篇
大气科学   4篇
地球物理   20篇
地质学   16篇
海洋学   5篇
天文学   26篇
自然地理   4篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1982年   1篇
排序方式: 共有76条查询结果,搜索用时 62 毫秒
31.
Activity and stability phases as well as geomorphic processes within the Critical Zone are well known. Erosion and deposition of sediments represent activity; soils represent geomorphic stability phases. Data are presented from a 4 m deep sediment section that was dated by luminescence techniques. Upslope erosion and resulting sedimentation started in the late Pleistocene around 18 ka until 12 ka. Conditions at the study site then changed, which led to the formation of a well-developed soil. Radiocarbon dating of the organic matter yielded ages between 8552 and 8995 cal. BP. From roughly 6.2 to 5.4 ka another activity phase accompanied by according sediment deposition buried the soil and a new soil, a Cambisol, was formed at the surface. The buried soil is a strongly developed Luvisol. The black colors in the upper part of the buried soil are not the result of pedogenic accumulation of normal organic matter within an A-horizon. Nuclear magnetic resonance spectroscopy clearly documents the high amount of aromatic components (charcoal), which is responsible for the dark color. This indicates severe burning events at the site and the smaller charcoal dust (black carbon) was transported to deeper parts of the profile during the process of clay translocation.  相似文献   
32.
Previous estimates of the volatile contents of Martian basalts, and hence their source regions, ranged from nearly volatile‐free through estimates similar to those found in terrestrial subduction zones. Here, we use the bulk chemistry of Martian meteorites, along with Martian apatite and amphibole chemistry, to constrain the volatile contents of the Martian interior. Our estimates show that the volatile content of the source region for the Martian meteorites is similar to the terrestrial Mid‐Ocean‐Ridge Mantle source. Chlorine is enriched compared with the depleted terrestrial mantle but is similar to the terrestrial enriched source region; fluorine is similar to the terrestrial primitive mantle; and water is consistent with the terrestrial mantle. Our results show that Martian magmas were not volatile saturated; had water/chlorine and water/fluorine ratios ~0.4–18; and are most similar, in terms of volatiles, to terrestrial MORBs. Presumably, there are variations in volatile content in the Martian interior as suggested by apatite compositions, but more bulk chemical data, especially for fluorine and water, are required to investigate these variations. Finally, the Noachian Martian interior, as exemplified by surface basalts and NWA 7034, may have had higher volatile contents.  相似文献   
33.
The architecture of the critical zone includes the distribution, thickness, and contacts of various types of slope deposits and weathering products such as saprolite and weathered bedrock resting on solid bedrock. A quantitative analysis of architecture is necessary for many model‐driven approaches used by pedologic, geomorphic, hydrologic or biologic studies. We have used electrical resistivity tomography, a well‐established geophysical technique causing minimum surficial disturbance, to portray the subsurface electrical resistivity differences at three study sites (Green Lakes Valley; Gordon Gulch; Betasso) at the Boulder Creek Critical Zone Observatory (BcCZO). Possible limitations of the technique are discussed. Interpretation of the specific resistivity values using natural outcrops, pits, roadcuts and drilling data as ground truth information allows us to image the critical zone architecture of each site. Green Lakes Valley (3700 MASL), a glacially eroded alpine basin, shows a rather simple, split configuration with coarse blockfields and sediments, partly containing permafrost above bedrock. The critical zone in Gordon Gulch (2650 MASL), a montane basin with rolling hills, and Betasso (1925 MASL), a lower montane basin with v‐shaped valleys, is more variable due to a complex Quaternary geomorphic history. Boundaries between overlying stratified slope deposits and saprolite were identified at mean depths of 3.0 ± 2.2 m and 4.1 ± 3.6 m in the respective sites. The boundary between saprolite and weathered bedrock is deeper in Betasso at 5.8 ± 3.7 m, compared with 4.3 ± 3.0 m in Gordon Gulch. In general, the data are consistent with results from seismic studies, but electrical resistivity tomography documents a 0.5–1.5 m shallower critical zone above the weathered bedrock on average. Additionally, we document high lateral variability, which results from the weathering and sedimentation history and seems to be a consistent aspect of critical zone architecture within the BcCZO. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
34.
The recent assessment of the Mitchell Creek Landslide (MCL) in northern British Columbia is a good case history of engineering geomorphological analysis of a large landslide. It was completed using historic aerial photographs, with approximately 20-year time intervals dating back to the mid-twentieth century and field investigations completed between 2008 and 2014. The large bedrock slide initiated between 1956 and 1972 and continues to experience ongoing annual movements. Significant glacial downwasting and retreat has been observed in the photographic record, and it is hypothesized that alpine glaciation has contributed to development of the MCL. This paper documents four aspects of the engineering geomorphological assessment completed at the MCL: (i) topographic evolution, (ii) slope morphology, (iii) deformation features, and (iv) displacement behavior. Four distinct geomorphic zones have been defined at the MCL based on these analyses, controlled by different failure mechanisms. The extents of these zones have changed little over the documented history of the landslide, and rates of movement estimated from aerial photography have been consistent over the last 60 years. Retreat of the Mitchell Valley Glacier appears to have played an important role in landslide initiation, as the ice mass receded the kinematic freedom of the slope increased. This study of the initiation and development of the MCL demonstrates the capabilities of a multi-faceted approach to engineering geomorphology. The combination of historical aerial photographs with digital photogrammetric modeling and point cloud analysis techniques, and geomorphological mapping, allows for development of a robust understanding of landslide behavior.  相似文献   
35.
Urban-rural difference of land cover is the key determinant of urban heat island (UHI). In order to evaluate the impact of land cover data on the simulation of UHI, a comparative study between up-to-date CORINE land cover (CLC) and Urban Atlas (UA) with fine resolution (100 and 10 m) and old US Geological Survey (USGS) data with coarse resolution (30 s) was conducted using the Weather Research and Forecasting model (WRF) coupled with bulk approach of Noah-LSM for Berlin. The comparison between old data and new data partly reveals the effect of urbanization on UHI and the historical evolution of UHI, while the comparison between different resolution data reveals the impact of resolution of land cover on the simulation of UHI. Given the high heterogeneity of urban surface and the fine-resolution land cover data, the mosaic approach was implemented in this study to calculate the sub-grid variability in land cover compositions. Results showed that the simulations using UA and CLC data perform better than that using USGS data for both air and land surface temperatures. USGS-based simulation underestimates the temperature, especially in rural areas. The longitudinal variations of both temperature and land surface temperature show good agreement with urban fraction for all the three simulations. To better study the comprehensive characteristic of UHI over Berlin, the UHI curves (UHIC) are developed for all the three simulations based on the relationship between temperature and urban fraction. CLC- and UA-based simulations show smoother UHICs than USGS-based simulation. The simulation with old USGS data obviously underestimates the extent of UHI, while the up-to-date CLC and UA data better reflect the real urbanization and simulate the spatial distribution of UHI more accurately. However, the intensity of UHI simulated by CLC and UA data is not higher than that simulated by USGS data. The simulated air temperature is not dominated by the land cover as much as the land surface temperature, as air temperature is also affected by air advection.  相似文献   
36.
37.
Little is known about the detailed behavior of glaciers in the Karakoram Mountains. Advanced land observing satellite (ALOS) phased array type L-band synthetic aperture radar (PALSAR) data were used to obtain the surface velocity of the Yengisogat Glacier in the Karakoram Mountains. Four ALOS PALSAR data sets with 46?days temporal baseline acquired from 2007 to 2009 covered all four seasons and were used to extract the offset fields and estimate annual average surface velocity based on seasonal velocities. For the ALOS PALSAR data the synthetic aperture radar (SAR) feature-tracking procedures within the GAMMA software were utilized instead of SAR interferometry because of low coherence in case of fast-moving glaciers or large time intervals between the image acquisitions. The accuracy of the measurements is discussed, and the measurements were consistent with previous results from optical imagery feature tracking. It was revealed that the south tributaries contributed to the main flow of the glacier, with the glacier surface velocities of the south tributaries moving more rapidly than the north tributaries. This was mainly attributed to the effect of the glacier??s aspect in the glacier long-term development point of view. Seasonal and spatial variations of the glacier surface velocity imply that the tributary South Skamri Glacier is probably surging. This has previously been mentioned by some researchers such as Copland et al. The Equilibrium Line Altitude was found to be at about 5,000?m a.s.l for south tributaries, estimated from the surface velocity distribution along the glacier centerline.  相似文献   
38.
The importance of Cl in basalt petrogenesis has been recognized, yet constraints on its effect on liquidus crystallization of basalts are scarce. In order to quantify the role of Cl in basaltic systems, we have experimentally determined near-liquidus phase relations of a synthetic Fe–Mg-rich basalt, doped with 0.0–2.5 wt% dissolved Cl, at 0.7, 1.1, and 1.5 GPa. Results have been parameterized and compared with previous data from literature. The effect of Cl on mineral chemistry and liquidus depression is dependent on the starting basaltic composition. The liquidus depression measured for a SiO2-rich, Al2O3-poor basalt is smaller than that observed for a basaltic melt depleted in silica and enriched in FeOT and Al2O3. The effect of Cl on depression of the olivine–orthopyroxene–liquid multiple saturation pressure does not seem to vary with the starting composition of the basaltic liquid. This suggests that Cl may significantly promote the generation of silica-poor, Fe–Al-rich magmas in the Earth, Mars, and the Moon.  相似文献   
39.
The subalpine to montane zones within the Critical Zone (CZ) of the Colorado Front Range, USA outside Pleistocene glaciation limits are characterized by the abundance of stratified and multilayered slope deposits exhibiting depths >1 m. Initial luminescence dating for the upper sediment layers in different profiles give last glacial ages ranging between 40 and 12 ka. A periglacial origin by solifluction is hypothesized for these slope deposits, which is corroborated by geomorphic and sedimentologic parameters. The stratified slope sediments have a strong influence on the physical and chemical properties as well as on soil forming processes in the CZ. Examples are provided for the sediment derived contribution of some elements and common clay minerals together and the great importance of slope sediments as barriers and pathways for the interflow that runs in sediment layers are shown.  相似文献   
40.
Martian magmas are thought to be rich in chlorine compared with their terrestrial counterparts. Here, we experimentally investigate the effect of chlorine on liquidus depression and near‐liquidus crystallization of olivine‐phyric shergottite NWA 6234 and compare these results with previous experimental results on the effect of chlorine on near‐liquidus crystallization of the surface basalts Humphrey and Fastball. Previous experimental results showed that the change in liquidus temperature is dependent on the bulk composition of the basalt. The effect of chlorine on liquidus depression is greater for lower SiO2 and higher Al2O3 magmas than for higher SiO2 and lower Al2O3 magmas. The bulk composition for this study has lower Al2O3 and higher FeO contents than previous work; therefore, we provide additional constraints on the effect of the bulk composition on the influence of chlorine on near‐liquidus crystallization. High pressure and temperature crystallization experiments were performed at 1 GPa on a synthetic basalt, of the bulk composition of NWA 6234, with 0–4 wt% Cl added to the sample as AgCl. The results are consistent with previous notions that with increasing wt% Cl in the melt, the crystallization temperature decreases. Importantly, our results have a liquidus depression ?T (°C) from added chlorine that is consistent with the difference in bulk composition and suggest a dependence on both the bulk Al2O3 and FeO content. Our results suggest that the addition of chlorine to the Martian mantle may lower magma genesis temperatures and potentially aid in the petrogenesis of Martian magmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号