首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31914篇
  免费   1522篇
  国内免费   2923篇
测绘学   2201篇
大气科学   3566篇
地球物理   6033篇
地质学   15123篇
海洋学   2413篇
天文学   2017篇
综合类   2801篇
自然地理   2205篇
  2024年   44篇
  2023年   109篇
  2022年   359篇
  2021年   397篇
  2020年   388篇
  2019年   399篇
  2018年   5115篇
  2017年   4335篇
  2016年   2946篇
  2015年   653篇
  2014年   553篇
  2013年   562篇
  2012年   1520篇
  2011年   3253篇
  2010年   2467篇
  2009年   2754篇
  2008年   2287篇
  2007年   2738篇
  2006年   411篇
  2005年   534篇
  2004年   661篇
  2003年   608篇
  2002年   462篇
  2001年   287篇
  2000年   286篇
  1999年   284篇
  1998年   249篇
  1997年   219篇
  1996年   209篇
  1995年   182篇
  1994年   174篇
  1993年   148篇
  1992年   138篇
  1991年   121篇
  1990年   84篇
  1989年   78篇
  1988年   63篇
  1987年   50篇
  1986年   30篇
  1985年   24篇
  1984年   22篇
  1983年   16篇
  1982年   27篇
  1981年   35篇
  1980年   26篇
  1979年   8篇
  1977年   5篇
  1976年   14篇
  1973年   4篇
  1958年   3篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
131.
THERIA_G: a software program to numerically model prograde garnet growth   总被引:6,自引:4,他引:2  
We present the software program THERIA_G, which allows for numerical simulation of garnet growth in a given volume of rock along any pressure–temperature–time (PTt) path. THERIA_G assumes thermodynamic equilibrium between the garnet rim and the rock matrix during growth and accounts for component fractionation associated with garnet formation as well as for intracrystalline diffusion within garnet. In addition, THERIA_G keeps track of changes in the equilibrium phase relations, which occur during garnet growth along the specified PTt trajectory. This is accomplished by the combination of two major modules: a Gibbs free energy minimization routine is used to calculate equilibrium phase relations including the volume and composition of successive garnet growth increments as P and T and the effective bulk rock composition change. With the second module intragranular multi-component diffusion is modelled for spherical garnet geometry. THERIA_G allows to simulate the formation of an entire garnet population, the nucleation and growth history of which is specified via the garnet crystal size frequency distribution. Garnet growth simulations with THERIA_G produce compositional profiles for the garnet porphyroblasts of each size class of a population and full information on equilibrium phase assemblages for any point along the specified PTt trajectory. The results of garnet growth simulation can be used to infer the PTt path of metamorphism from the chemical zoning of garnet porphyroblasts. With a hypothetical example of garnet growth in a pelitic rock we demonstrate that it is essential for the interpretation of the chemical zoning of garnet to account for the combined effects of the thermodynamic conditions of garnet growth, the nucleation history and intracrystalline diffusion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
F. GaidiesEmail:
  相似文献   
132.
The grain-scale processes of peridotite melting were examined at 1,340°C and 1.5 GPa using reaction couples formed by juxtaposing pre-synthesized clinopyroxenite against pre-synthesized orthopyroxenite or harzburgite in graphite and platinum-lined molybdenum capsules. Reaction between the clinopyroxene and orthopyroxene-rich aggregates produces a melt-enriched, orthopyroxene-free, olivine + clinopyroxene reactive boundary layer. Major and trace element abundance in clinopyroxene vary systematically across the reactive boundary layer with compositional trends similar to the published clinopyroxene core-to-rim compositional variations in the bulk lherzolite partial melting studies conducted at similar PT conditions. The growth of the reactive boundary layer takes place at the expense of the orthopyroxenite or harzburgite and is consistent with grain-scale processes that involve dissolution, precipitation, reprecipitation, and diffusive exchange between the interstitial melt and surrounding crystals. An important consequence of dissolution–reprecipitation during crystal-melt interaction is the dramatic decrease in diffusive reequilibration time between coexisting minerals and melt. This effect is especially important for high charged, slow diffusing cations during peridotite melting and melt-rock reaction. Apparent clinopyroxene-melt partition coefficients for REE, Sr, Y, Ti, and Zr, measured from reprecipitated clinopyroxene and coexisting melt in the reactive boundary layer, approach their equilibrium values reported in the literature. Disequilibrium melting models based on volume diffusion in solid limited mechanism are likely to significantly underestimate the rates at which major and trace elements in residual minerals reequilibrate with their surrounding melt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
133.
134.
Garnet-bearing schists from the Waterville Formation of south-central Maine provide an opportunity to examine the factors governing porphyroblast size over a range of metamorphic grade. Three-dimensional sizes and locations for all garnet porphyroblasts were determined for three samples along the metamorphic field gradient spanning lowest garnet through sillimanite grade, using high-resolution X-ray computed tomography. Comparison of crystal size distributions to previous data sets obtained by stereological methods for the same samples reveals significant differences in mode, mean, and shape of the distributions. Quantitative textural analysis shows that the garnets in each rock crystallized in a diffusion-controlled nucleation and growth regime. In contrast to the typical observation of a correlation between porphyroblast size and position along a metamorphic field gradient, porphyroblast size of the lowest-grade specimen is intermediate between the high- and middle-grade specimens’ sizes. Mean porphyroblast size does not correlate with peak temperatures from garnet-biotite Fe-Mg exchange thermometry, nor is post-crystallization annealing (Ostwald Ripening) required to produce the observed textures, as was previously proposed for these rocks. Robust pseudosection calculations fail to reproduce the observed garnet core compositions for two specimens, suggesting that these calc-pelites experienced metasomatism. For each of these two specimens, Monte Carlo calculations suggest potential pre-metasomatism bulk compositions that replicate garnet core compositions. Pseudosection analyses allow the estimation of the critical temperatures for garnet growth: ∼481, ∼477, and ∼485°C for the lowest-garnet-zone, middle-garnet-zone, and sillimanite-zone specimens, respectively. Porphyroblast size appears to be determined in this case by a combination of the heating rate during garnet crystallization, the critical temperature for the garnet-forming reaction and the kinetics of nucleation. Numerical simulations of thermally accelerated, diffusion-controlled nucleation, and growth for the three samples closely match measured crystal size distributions. These observations and simulations suggest that previous hypotheses linking the garnet size primarily to the temperature at the onset of porphyroblast nucleation can only partially explain the observed textures. Also important in determining porphyroblast size are the heating rate and the distribution of favorable nucleation sites.  相似文献   
135.
Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over 2-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran Hg analyzers. GEM, RGM, and particulate Hg (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize Hg air concentrations in the southern Idaho area for the first time, estimate Hg dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m−3) and RGM (8.1 ± 5.6 pg m−3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m−3, 3.2 ± 2.9 pg m−3 for GEM, RGM, respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m−3). Seasonally averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s−1 for GEM (spring, summer, fall and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s−1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 μg m−2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2–12 ng m−3) and RGM (50–150 pg m−3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicate predominant source directions to the SE (western Utah, northeastern Nevada) and SW (north-central Nevada) with fewer inputs from the NW (southeastern Oregon and southwestern Idaho).  相似文献   
136.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   
137.
Agriculture in the southern Great Plains of Canada has been particularly vulnerable to prolonged episodes of drought. Using climate data and a precipitation minus potential evapotranspiration index, the extent of the region’s exposure to drought is examined. Between 1914 and 1917, the Dry Belt was particularly vulnerable to drought, whereas after 1928, a much larger region known as the Palliser Triangle covering most of southern Alberta and Saskatchewan was much more exposed to drought. These droughts provoked major institutional adaptation, in particular the establishment of the Special Areas Board by the Government of Alberta, and the creation of the Prairie Farm Rehabilitation Administration by the Government of Canada. Both organizations have proved to be relatively permanent public adaptations to the natural hazard of drought in the region. Moreover, these earlier experiences with prolonged drought as well as institution-building may be of value in helping the residents of the Palliser Triangle adapt to predicted climate changes in the future as well as anticipate some of the barriers to effective institutional adaptation.  相似文献   
138.
Tidal inundation by high tide under enhanced land subsidence is a damaging phenomenon and a major threat to the Semarang urban area in Indonesia. It impacts on economic activities, as well as the cost of an emergency program and causes interruption of pubic services, danger of infectious diseases and injury to human lives. This study examines a spatial analysis tool on the GIS-raster system for the tidal inundation mapping based on the subsidence-benchmark data and modified detail digital elevation model. Neighborhood operation and iteration model as a spatial analysis tool have been applied in order to calculate the encroachment of the tidal inundation on the coastal area. The resulting map shows that the tidal flood spreads to the lowland area and causes the inundation of coastal settlement, infrastructure, as well as productive agricultural land, i.e., the fish-pond area. The monitoring of the vulnerable area due to the tidal inundation under the scenario of extended land subsidence plays an important role in long-term coastal zone management in Semarang.  相似文献   
139.
Gravitational spreading of mountain ridges displays primary disequilibrium of flysch mountain areas of the Czech Carpathians. The progression of various types of mass movements is a product of long-term ridge disintegration and is predisposed by the geological structure of the area and the upper Tertiary-Quaternary morphogenesis of the mountain area. Deep-seated slope deformations are spatially interconnected by the occurrence of some other types of slope deformations (e.g. debris flows, debris slides, slumps, rock avalanches, etc.), which pose a considerable risk for the existence of human society. An important causative factor in these dynamically developing hazardous processes is, among other factors, the way in which land has been used in the last three centuries. Therefore, the occurrence of various types of slope deformations is studied in terms of their relation to deep-seated gravitational deformations and in terms of other limiting factors (structural geological, morphological and climatic factors, manmade impacts, etc.). The paper presents several case studies of slope deformations (Velká Čantoryje Mt, Lysá hora Mt, Ropice Mt and Smrk Mt) in the area of the Outer Carpathians within the territory of the Czech Republic and also adverts to some consequences in terms of the socioeconomic structure of the landscape.  相似文献   
140.
This article gives a general introduction to land subsidence with the prediction approaches due to withdrawal of groundwater in three subsided/subsiding regions in China: the deltaic plain of Yangtse River (YRDP), North China Plain (NCP), and Fenwei Plain (FP). On YRDP, Shanghai is the typical subsided/subsiding city; on NCP Tianjin is the typical subsided/subsiding city, and on FP Taiyuan is the typical subsided/subsiding city. The subsided area with subsidence over 200 mm on YRDP is about 10,000 km2 and the maximum subsided value reached 2.9 m at Shanghai; on NCP the subsided area reached 60,000 km2 with the maximum subsidence of 3.9 m at Tianjing; on FP the subsided area is relatively smaller than that on the other two plains and is about 1,135 km2 with maximum subsidence of 3.7 m at Taiyuan city. In order to protect the civil and industrial facilities, it is necessary to predict the future development of land subsidence based on present state. Many researchers proposed several approaches to predict the land subsidence due to groundwater withdrawal according to different geological conditions and groundwater withdrawal practice. This article classifies these approaches into five categories: (i) statistical methods; (ii) 1D numerical method; (iii) quasi-3D seepage model; (iv) 3D seepage model; (v) fully coupled 3D model. In China, the former four categories are presently employed in the prediction practice and their merits and demerits are discussed. According to the prediction practice, 3D seepage model is the best method presently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号