首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   4篇
  国内免费   4篇
测绘学   2篇
大气科学   9篇
地球物理   30篇
地质学   30篇
海洋学   20篇
天文学   38篇
综合类   4篇
自然地理   1篇
  2024年   1篇
  2021年   3篇
  2020年   6篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   8篇
  2008年   7篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   7篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
51.
The famous extreme solar and particle event of 20 January 2005 is analyzed from two perspectives. Firstly, using multi-spectral data, we study temporal, spectral, and spatial features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of solar energetic particles (SEP) arriving at Earth, i.e., acceleration in flares, or shocks ahead of coronal mass ejections (CMEs). Our analysis shows that all electromagnetic emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. In particular, a huge (≈ 105 sfu) radio burst with a high frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in very strong magnetic fields. Thus, protons and electrons responsible for various flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the ground-level enhancement (GLE), and highest-energy gamma-rays identified with π 0-decay emission, are similar and closely correspond in time. The origin of the π 0-decay gamma-rays is argued to be the same as that of lower-energy emissions, although this is not proven. On the other hand, we estimate the sky-plane speed of the CME to be 2 000 – 2 600 km s−1, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We therefore conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the major flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred nearly simultaneously within the flare region. However, our analysis does not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate at later stages of the SEP event. S.N. Kuznetsov deceased 17 May 2007.  相似文献   
52.
This paper concerns technological efforts for the general acceptance of performance-based seismic design principle of geotechnical structures. Among many problems to be solved, a particular emphasis was placed on the prediction of residual displacement that remains after a strong earthquake. Because of the complicated behavior of soils undergoing cyclic loading, the prediction is often either complicated/costly or not very accurate. The aim of this study is to examine the capability of existing prediction measures and propose some future scopes. To achieve these goals, shaking table model tests and laboratory shear tests were conducted by taking fill dams as an example target structure. It is concluded that performance-based design is possible if the necessary time and cost are spent and if the required accuracy of prediction is reasonable.  相似文献   
53.
54.
Linné is a simple crater, with a diameter of 2.23 km and a depth of 0.52 km, located in northwestern Mare Serenitatis. Recent high‐resolution data acquired by the Lunar Reconnaissance Orbiter Camera revealed that the shape of this impact structure is best described by an inverted truncated‐cone. We perform morphometric measurements, including slope and profile curvature, on the Digital Terrain Model of Linné, finding the possible presence of three subtle topographic steps, at the elevation of +20, ?100, and ?200 m relative to the target surface. The kink at ?100 m might be related to the interface between two different rheological layers. Using the iSALE shock physics code, we numerically model the formation of Linné crater to derive hints on the possible impact conditions and target physical properties. In the initial setup, we adopt a basaltic projectile impacting the Moon with a speed of 18 km s?1. For the local surface, we consider either one or two layers, in order to test the influence of material properties or composite rheologies on the final crater morphology. The one‐layer model shows that the largest variations in the crater shape take place when either the cohesion or the friction coefficient is varied. In particular, a cohesion of 10 kPa marks the threshold between conical‐ and parabolic‐shaped craters. The two‐layer model shows that the interface between the two layers would be exposed at the observed depth of 100 m when an intermediate value (~200 m) for the upper fractured layer is set. We have also found that the truncated‐cone morphology of Linné might originate from an incomplete collapse of the crater wall, as the breccia lens remains clustered along the crater walls, while the high‐albedo deposit on the crater floor can be interpreted as a very shallow lens of fallout breccia. The modeling analysis allows us to derive important clues on the impactor size (under the assumption of a vertical impact and collision velocity equal to the mean value), and on the approximate, large‐scale preimpact target properties. Observations suggest that these large‐scale material properties likely include some important smaller scale variations, disclosed as subtle morphological steps in the crater walls. Furthermore, the modeling results allow advancing some hypotheses on the geological evolution of the Mare Serenitatis region where Linné crater is located (unit S14). We suggest that unit S14 has a thickness of at least a few hundreds of meters up to about 400 m.  相似文献   
55.
Antidunes are fluvial bedforms that form in rivers with supercritical flows. The water surface over antidunes is strongly in phase with the bed surface, and the water surface is amplified to produce large surface waves. Many experimental studies have addressed antidunes; however, the shapes of three-dimensional antidunes in a wide channel with alternate bars have not yet been appropriately understood. In this study, we experimentally investigated the streamwise and transverse length scales of antidunes under conditions with a large width–depth ratio. Our experimental results provide evidence for the coevolution of antidunes and free alternate bars, and show for the first time that the development of free bars greatly alters the three-dimensional shape of water surface waves over antidunes. In the absence of free bars in a wide channel, multiple longitudinal wave trains form, and the number of wave trains counted in the transverse direction increases with increases in the width–depth ratio. However, the presence of free bars affects the local flow characteristics, resulting in a decrease of the number of wave trains in the transverse direction. Therefore, we propose a simple model for predicting the reduction in the number of wave trains by combining two previous theories for antidunes and free bars. Results obtained by the model were found to largely agree with experimental observations. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
56.
This study investigated geological evidence for near-surface crustal deformation in a high-strain shear zone that has been geodetically identified but which is not associated with obvious tectonic landforms. Fieldwork was conducted in the east–west-trending southern Kyushu high-strain shear zone (SKHZ), Japan, focusing mainly on occurrences of fracture zones, which are defined by a visible fracture density of >1 per 10 cm2 and are commonly associated with cataclasite, fault breccia, and gouge. The area in which east–west-trending fracture zones are dominant is restricted to the east–west-trending, ~2-km-wide aftershock area of the 1997 Northwestern Kagoshima Earthquakes. Analysis of slip data from minor faults using the multiple inverse method, irrespective of whether the faults are in fracture zones, reveals that the area where the calculated main stress field is consistent with the current stress field estimated from focal-mechanism solutions of microearthquakes is restricted to the east–west-trending aftershock area. This finding for the SKHZ contrasts with the case of the Niigata–Kobe Tectonic Zone, which is a major strain-concentration zone with many exposed active faults in central Japan and for which the stress field estimated using fault-slip data is considered to be uniform and coincides with the current stress field. The cumulative amount of displacement estimated from the areal density of fracture zones in the SKHZ study area is smaller than that estimated from geodetically measured strain rates. Investigations based on slip data from minor faults and fracture-zone occurrence could help to identify concealed faults that are too small to generate tectonic landforms but which are sufficiently large to trigger major earthquakes.  相似文献   
57.
We report on the detection of VLBI fringes from quasars by a new VLBI system operating at 1 Gbps (1024 Mbits-per-second). Newly developed 1024 Msps (mega sample-per-second) AD samplers and 1024 Mbps recorders were used for the observations. A correlator with external buffers was used for the 1024 Mbps correlation processing of the tapes data.Our new VLBI system enabled 1024 Mbps VLBI, and this allowed the sampling of a 512 MHz bandwidth from a radio telescope receiver. This is the highest sampling speed ever used for VLBI, and the widest bandwidth used for VLBI observation. Initial sensitivity as evaluated by SNR comparison with earlier VLBI systems produced results to matched the expanded bandwidth. In our first observations, simultaneous optical fibre linked real-time VLBI observations were made to check the validity of data and precisely detemine the clock offsets among the radio telescopes.  相似文献   
58.
From 200 GRF (gradual rise and fall) bursts which have been recorded with the 17 GHz interferometer at Nobeyama, we deduce the following characteristics of GRF bursts: (1) Sources of GRF bursts are broader, less circularly polarized than those of impulsive bursts. (2) The sources are potentially of bipolar structure and have the peak brightness near the position at which the sense of circular polarization changes. (3) The association of GRF bursts with type III bursts, which are indicative of nonthermal electron acceleration, is significantly poorer than that of impulsive bursts.It is suggested that the sources of GRF bursts or generally of thermal bursts lie relatively high in the solar atmosphere possibly near the top of magnetic loops or arches which divide two regions of opposite magnetic polarity.  相似文献   
59.
Top-of-atmosphere reflectance measured above the ocean in the visible and near infrared, after correction for molecular scattering, may be linearly combined to retrieve surface chlorophyll-a abundance directly, without explicit correction for aerosol scattering and absorption. The coefficients of the linear combination minimize the perturbing effects, which are modeled by a polynomial, and they do not depend on geometry. The technique has been developed for Global Imager (GLI) spectral bands centered at 443, 565, 667, and 866 nm, but it is applicable to other sets of spectral bands. Theoretical performance is evaluated from radiation-transfer simulations for a wide range of geophysical and angular conditions. Using a polynomial with exponents of −2, −1, and 0 to determine the coefficients, the residual influence of the atmosphere on the linear combination is within ±0.001 in most cases, allowing chlorophyll-a abundance to be retrieved with a root-mean-squared (RMS) error of 8.4% in the range 0.03–3 mgm−3. Application of the method to simulated GLI imagery shows that estimated and actual chlorophyll-a abundance are in agreement, with an average RMS difference of 32.1% and an average bias of −2.2% (slightly lower estimated values). The advantage of the method resides in its simplicity, flexibility, and rapidity of execution. Knowledge of aerosol amount and type is avoided. There is no need for look-up tables of aerosol optical properties. Accuracy is adequate, but depends on the polynomial representation of the perturbing effects and on the bio-optical model selected to relate the linear combination to chlorophyll-a abundance. The sensitivity of the linear combination to chlorophyll-a abundance can be optimized, and the method can be extended to the retrieval of other bio-optical variables.  相似文献   
60.
The relation between the initial spatial scale and the life time, of turbulent small masses of sea water produced at the strait or the interface between two water masses, is investigated analytically. In the analysis, their initial shape is assumed to be expressed as the Rankine vortex, and the horizontal eddy viscosity coefficient to obey then-th power-law with respect to scale. Particularly in the case ofn=4/3 (the 4/3 power-law), it is obtained that the life time is proportional to the 2/3 power of the initial scale. The proportional coefficient can be determined in the present analysis except a parameter related to the energy dissipation rate of each sea area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号