首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   28篇
  国内免费   3篇
测绘学   8篇
大气科学   16篇
地球物理   52篇
地质学   73篇
海洋学   12篇
天文学   36篇
自然地理   21篇
  2022年   2篇
  2021年   9篇
  2020年   8篇
  2019年   6篇
  2018年   10篇
  2017年   11篇
  2016年   20篇
  2015年   9篇
  2014年   13篇
  2013年   21篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   7篇
  2006年   6篇
  2005年   17篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1998年   3篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有218条查询结果,搜索用时 31 毫秒
191.
An empirical calibration for the oxygen isotope fractionation between biogenic silica and water was determined for diatom frustules sampled from living diatom communities in the Jemez Mountains of northern New Mexico, USA. Over a temperature range from 5.1 to 37.8 °C, the silica-water fractionation is defined by the equation 1000 ln α(silica-water) = 2.39(±0.13) × 106T−2 + 4.23(±1.49). This relationship is in close agreement with other published silica-water fractionation factors for laboratory cultured diatom samples; however, it is as much as 8‰ lower than equilibrium quartz-water fractionations and 3-4‰ lower than observed silica-water fractionations in diatomaceous silica collected from sediment traps and sediment cores. There are three possible explanations for the disparate silica-water fractionation factors observed in diatom silica: (1) silica does not precipitate in equilibrium with ambient water, (2) silica does precipitate in equilibrium with ambient water, but the silica-water fractionation factor for diatom silica is considerably less than the equilibrium fractionation factor for quartz-water, or (3) silica precipitation is influenced by a ‘vital’ effect, where the δ18O value of the water inside the diatom cell walls is lower than the δ18O values of ambient water.Post-mortem loss of organic material results in an alteration or ‘maturation’ of diatom silica in which silica reequilibrates with a silica-water fractionation closer to the equilibrium quartz-water fractionation. Alteration is likely to occur rapidly after the diatom frustule loses its organic coating, either as it settles through the water column or at the sediment-water interface; δ18O values recorded by paleo-diatom silica therefore do not record growing conditions but more likely record conditions at the sediment-water interface. In the case of lacustrine environments, where the bottom water remains at a nearly constant 4 °C, the reequilibration of diatom silica with bottom conditions could reduce or remove the conflating effects of temperature on δ18O values recorded by paleo-diatom silica and provide direct information on the δ18O value of the lake water.  相似文献   
192.
Aquifer natural recharge estimations are a prerequisite for understanding hydrologic systems and sustainable water resources management. As meteorological data series collection is difficult in arid and semiarid areas, satellite products have recently become an alternative for water resources studies. A daily groundwater recharge estimation in the NW part of the Lake Chad Basin, using a soil–plant-atmosphere model (VisualBALAN), from ground- and satellite-based meteorological input dataset for non-irrigated and irrigated land and for the 2005–2014 period is presented. Average annual values were 284 mm and 30°C for precipitation and temperature in ground-based gauge stations. For the satellite-model-based Lake Chad Basin Flood and Drought Monitor System platform (CHADFDM), average annual precipitation and temperature were 417 mm and 29°C, respectively. Uncertainties derived from satellite data measurement could account for the rainfall difference. The estimated mean annual aquifer recharge was always higher from satellite- than ground-based data, with differences up to 46% for dryland and 23% in irrigated areas. Recharge response to rainfall events was very variable and results were very sensitive to: wilting point, field capacity and curve number for runoff estimation. Obtained results provide plausible recharge values beyond the uncertainty related to data input and modelling approach. This work prevents on the important deviations in recharge estimation from weighted-ensemble satellite-based data, informing in decision making to both stakeholders and policy makers.  相似文献   
193.
Seasonally predicted precipitation at a resolution of 2.5° was statistically downscaled to a fine spatial scale of ~20 km over the southeastern United States. The downscaling was conducted for spring and summer, when the fine-scale prediction of precipitation is typically very challenging in this region. We obtained the global model precipitation for downscaling from the National Center for Environmental Prediction/Climate Forecast System (NCEP/CFS) retrospective forecasts. Ten member integration data with time-lagged initial conditions centered on mid- or late February each year were used for downscaling, covering the period from 1987 to 2005. The primary techniques involved in downscaling are Cyclostationary Empirical Orthogonal Function (CSEOF) analysis, multiple regression, and stochastic time series generation. Trained with observations and CFS data, CSEOF and multiple regression facilitated the identification of the statistical relationship between coarse-scale and fine-scale climate variability, leading to improved prediction of climate at a fine resolution. Downscaled precipitation produced seasonal and annual patterns that closely resemble the fine resolution observations. Prediction of long-term variation within two decades was improved by the downscaling in terms of variance, root mean square error, and correlation. Relative to the coarsely resolved unskillful CFS forecasts, the proposed downscaling drove a significant reduction in wet biases, and correlation increased by 0.1–0.5. Categorical predictability of seasonal precipitation and extremes (frequency of heavy rainfall days), measured with the Heidke skill score (HSS), was also improved by the downscaling. For instance, domain averaged HSS for two category predictability by the downscaling are at least 0.20, while the scores by the CFS are near zero and never exceed 0.1. On the other hand, prediction of the frequency of subseasonal dry spells showed limited improvement over half of the Georgia and Alabama region.  相似文献   
194.
To provide inter-lab comparison for high-precision Mg isotope analysis, Mg isotope compositions (expressed as δ26Mg relative to DSM-3) for commercially accessible peridotite, basalt, andesite, and granite geo-standards have been measured by multi-collector inductively coupled mass-spectrometry (Nu-Plasma) using sample-standard bracketing method. There is a large tolerance of matrix cations during the measurement of Mg isotopes, as intensity ratios of 23Na/24Mg and 27Al/24Mg of about 20% only change the δ26Mg by less than 0.1‰, and low 55Mn/24Mg (<0.1) and 58Ni/24Mg (<0.01) do not cause significant mass bias either. Concentration match between samples and standards within 90% is adequate to obtain accurate isotope analysis, which also mitigates the isobaric interference of 12C14N+ on 26Mg. Organic matrix from chemical purification can cause significant analytical errors when the mass of Mg processed is small. The long-term reproducibility of δ26MgDSM-3 for samples with relatively higher MgO content is about 0.11‰ (2SD), and granites with lower MgO content is about 0.2‰ (2SD). Although the standards in this study have wide ranges of major element compositions with SiO2 from 40 to 70 wt.% and MgO from 0.75 to 49.6 wt.%, they exhibit a variation of Mg isotopic compositions with δ26Mg from −0.07 to −0.40‰. δ26Mg do not correlate with SiO2 or MgO contents, suggesting homogenous Mg isotope compositions in igneous rocks at the level of current precision, relative to low temperature samples including sediments and riverine and sea waters. Our data do not support a non-chondritic Mg isotope composition of the Earth.  相似文献   
195.
The Gamma Ray Spectrometer (Mars Odyssey spacecraft) has revealed elemental distributions of potassium (K), thorium (Th), and iron (Fe) on Mars that require fractionation of K (and possibly Th and Fe) consistent with aqueous activity. This includes weathering, evolution of soils, and transport, sorting, and deposition, as well as with the location of first-order geomorphological demarcations identified as possible paleoocean boundaries. The element abundances occur in patterns consistent with weathering in situ and possible presence of relict or exhumed paleosols, deposition of weathered materials (salts and clastic minerals), and weathering/transport under neutral to acidic brines. The abundances are explained by hydrogeology consistent with the possibly overlapping alternatives of paleooceans and/or heterogeneous rock compositions from diverse provenances (e.g., differing igneous compositions).  相似文献   
196.
Chirp sub-bottom profiler source signature design and field testing   总被引:1,自引:0,他引:1  
Gutowski  Martin  Bull  Jon  Henstock  Tim  Dix  Justin  Hogarth  Peter  Leighton  Tim  White  Paul 《Marine Geophysical Researches》2002,23(5-6):481-492
Chirp sub-bottom profilers are marine sonar systems which use a highly repeatable source signature to facilitate the acquisition of correlated data with decimetre vertical resolution in the top 20–30 m of sediments. Source signatures can be readily developed and implemented, but an applicable methodology for assessing resolution and attenuation characteristics of these wide-band systems did not exist. Methodologies are developed and applied to seven contrasting source signatures which occupy the same frequency band, but differ in their Envelope and Instantaneous Frequency functions. For the Chirp source signatures tested, a Sine-Squared envelope function is shown to produce seismic data with the optimum resolution and penetration characteristics.  相似文献   
197.
ABSTRACT. The range boundaries for many tree species in the southeastern United States correspond to the Fall Line that separates the Coastal Plain from the Appalachian Highlands. Trees in the Coastal Plain with northern range boundaries corresponding to the Fall Line occur exclusively in alluvial valleys created by lateral channel migration. These species grow mostly on lower bottomland sites characterized by a high water table, soils that are often saturated, and low annual water fluctuation. In contrast to the Coastal Plain, the southern Appalachian Highlands are occupied mostly by bedrock streams that have few sites suitable for the regeneration of these species. The Fall Line is also an approximate southern boundary for trees common in the southern Appalachians that typically occur on either dry, rocky ridgetops or in narrow stream valleys, habitats that are uncommon on the relatively flat Coastal Plain. The ranges for many trees in eastern North America are controlled by large‐scale climatic patterns. Tree species with range boundaries corresponding to the Fall Line, however, are not approaching their physiological limits caused by progressively harsher climatic conditions or by competition. Instead, the Fall Line represents the approximate boundary of habitats suitable for regeneration.  相似文献   
198.
Coastal salt marsh tidal creeks are thought to show less channel adjustment/movement relative to their terrestrial fluvial counterparts. We propose a mechanism for disturbance-mediated bank failure that may allow/initiate channel migration in these otherwise stable systems. The stability of tidal creeks is promoted by the extensive vegetation root structure along the banks. However, wrack mats (i.e., dead vegetation) deposited on creek banks can cause the death of below-ground vegetation leading to bare, unstable banks that may slump into the channel. We measured the frequency of bank failures associated with wrack-disturbed sites along three creeks on Sapelo Island, Georgia, USA to determine whether these sites were vulnerable to erosion. Approximately 81% of the disturbed sites showed signs of bank failure. Therefore, wrack-induced bank failure may potentially lead to channel migration in creeks previously believed to be static landscape features.  相似文献   
199.
Measurement of the structure of gravel-bed river surfaces is crucial for understanding both bed roughness and the sediment entrainment process. This paper describes the use of close range digital photogrammetry to measure and monitor change occurring in submerged river gravel-beds in both flume and field environments. High-resolution digital elevation models (DEMs) were obtained and two-media (through air and water) techniques were used to correct for the e.ects of refraction at the air/water interface. Although suitable refractive models have been developed, the use of proprietary software to generate DEMs automatically introduces the problem of how to re-establish collinearity. A simple refraction correction algorithm based upon analytical geometry was developed and is described. This algorithm was designed for use after initial DEM acquisition and allows any photogrammetric software package to be used for data acquisition. Application of this algorithm led to improvements in DEM accuracy by reducing the systematic, depth-dependent bias caused by refraction
Research carried out in a flume environment allowed the algorithm to be tested by measuring a flooded and drained bed surface. Non-systematic differences between the "dry" and "wet" DEMs arose from reductions in stereomatching success in the two-media case. This effect was thought to be due to light attenuation and the introduction of residual parallax. Results suggest that close range digital photogrammetry can be used to extract high quality DEMs of submerged topography in both flume and field fluvial environments, which represents a particularly exciting development for fluvial geomorphologists  相似文献   
200.
This article has been retracted and replaced. See Retraction and Replacement Notice DOI: 10.1002/hyp.6350 Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated upwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Downwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号