首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
  国内免费   5篇
大气科学   1篇
地球物理   7篇
地质学   36篇
海洋学   3篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   5篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
11.
12.
Resuspension, transport, and deposition of sediments over the continental shelf and slope are complex processes and there is still a need to understand the underlying spatial and temporal dynamical scales. As a step towards this goal, a two-dimensional slice model (zero gradients in the alongshore direction) based on the primitive flow equations and a range of sediment classes has been developed. The circulation is forced from rest by upwelling or downwelling winds, which are spatially uniform. Results are presented for a range of wind speeds and sediment settling speeds. Upwelling flows carry fine sediments (low settling speeds) far offshore within the surface Ekman layer, and significant deposition eventually occurs beyond the shelf break. However, coarser sediments quickly settle out of the deeper onshore component of the circulation, which can lead to accumulation of bottom sediments within the coastal zone. Downwelling flows are more effective at transporting coarse sediments off the shelf. However, strong vertical mixing at the shelf break ensures that some material is also carried into the surface Ekman layer and returned onshore. The concentrations and settling fluxes of coarse sediments decrease offshore and increase with depth under both upwelling and downwelling conditions, consistent with trends observed in sediment trap data. However, finer sediments decrease with depth (upwelling) or reach a maximum around the depth of the shelf break (downwelling). It is shown that under uniform wind conditions, suspended sediment concentrations and settling fluxes decay offshore over a length scale of order τs/ρf|ws|, where τs is the wind stress, ρ the water density, f the Coriolis parameter, and ws is the sediment settling velocity. This scaling applies to both upwelling and downwelling conditions, provided offshore transport is dominated by wind-driven advection, rather than horizontal diffusion.  相似文献   
13.
The Bulawayan Group in the Midlands greenstone belt can be divided into three formations. The Mafic Formation is composed principally of pillowed, low-K tholeiites and minor bedded chert. The Maliyami Formation and conformably overlying Felsic Formation are composed of calc-alkaline tholeiites, andesites, and dacites with andesites dominating in the Felsic Formation. Minor rhyolite quartz porphyries and ultramafic bodies also occur in the section. The Bulawayan Group near Que Que is perhaps the least altered and metamorphosed Archean greenstone succession known. The absence of andesite and related rocks, the association of bedded chert, and the consistently low K2O, Rb, and Sr contents of Mafic Formation tholeiites suggest that they represent Archean oceanic rise tholeiites. The compositions of tholeiites and andesites of the Maliyami Formation, however, suggest that they represent an emerging arc system. The Felsic Formation is interpreted as a more advanced stage in the evolution of this arc system.Trace-element model calculations favor an origin for Mafic Formation tholeiites involving about 30% partial melting of a lherzolite source. Similar calculations are consistent with an origin for Maliyami Formation tholeiites, Maliyami and Felsic Formation andesites, and Midlands rhyolites involving, respectively, 50, 20–30, and 10% equilibrium melting of eclogite or garnet amphibolite (of Mafic Formation tholeiite composition). The low K2O, Rb, and Sr contents of Mafic Formation tholeiites suggest that they were derived from an upper mantle source as depleted in these elements as the oceanic upper mantle is today.A plate tectonic model is proposed for the Bulawayan Group in which the Mafic Formation is derived from a depleted lherzolite source beneath a spreading center in a marginalsea basin and the Maliyami and Felsic Formations and associated rhyolites are produced by partial melting of eclogite in a descending slab located west of the basin.  相似文献   
14.
Archean migmatites in the vicinity of Gwenoro Dam in Zimbabwe-Rhodesia are composed chiefly of trondhjemite gneiss (TR), mafic tonalite (MT), amphibolite (AM), leuco-trondhjemite veins (LTR), and pegmatites. The gneiss is intruded in nearby areas with small tonalite plutons (TN). Geochemical model studies together with field relationships are consistent with the following model for migmatite production: AM is produced by partial melting of a partly depleted ultramafic parent in which neither garnet nor amphibole remain in the residue; TR and TN are produced by partial melting of undepleted to variably depleted amphibolite in which garnet does not remain in the residue; MT is produced by mixing of plagioclase-rich TR with AM; and LTR represents the solid residue after fractional crystallization of TR.  相似文献   
15.
TTGs and adakites: are they both slab melts?   总被引:21,自引:0,他引:21  
Kent C. Condie   《Lithos》2005,80(1-4):33-44
Although both high-Al TTG (tonalite–trondhjemite–granodiorite) and adakite show strongly fractionated REE and incompatible element patterns, TTGs have lower Sr, Mg, Ni, Cr, and Nb/Ta than most adakites. These compositional differences cannot be easily related by shallow fractional crystallization. While adakites are probably slab melts, TTGs may be produced by partial melting of hydrous mafic rocks in the lower crust in arc systems or in the Archean, perhaps in the root zones of oceanic plateaus. It is important to emphasize that geochemical data can be used to help constrain tectonic settings, but it cannot be used alone to reconstruct ancient tectonic settings.

Depletion in heavy REE and low Nb/Ta ratios in high-Al TTGs require both garnet and low-Mg amphibole in the restite, whereas moderate to high Sr values allow little, if any, plagioclase in the restite. To meet these requirements requires melting in the hornblende eclogite stability field between 40- and 80-km deep and between 700 and 800 °C.

Some high-Al TTGs produced at 2.7 Ga and perhaps again at about 1.9 Ga show unusually high La/Yb, Sr, Cr, and Ni. These TTGs may reflect catastrophic mantle overturn events at 2.7 and 1.9 Ga, during which a large number of mantle plumes bombarded the base of the lithosphere, producing thick oceanic plateaus that partially melted at depth.  相似文献   

16.
17.
Many large-scale flows in the ocean are driven by an imposed horizontal density gradient and the resulting circulation is strongly influenced by the Earth's rotation. Some of the essential features of such flows have been incorporated into a laboratory model by differentially heating and cooling the vertical end walls of a shallow rectangular cavity rotating about a vertical axis. Buoyancy driven boundary currents produced by the heating and cooling were unstable and the resulting eddy structures eventually dominated the system. A broad mean flow, perpendicular to the side walls, developed in the central region of the cavity. The resultant steady-state flow had a barotropic component consisting of two large-scale gyres of cyclonic and anticyclonic senses. In this paper, the evolution of the flow towards its final steady state is described. Measurements of the time-scales for the establishment of stratification in the cavity, point to the existence of two dynamical density adjustment modes.  相似文献   
18.
Metamorphic mineral assemblages suggest the existence of variable geotherms and lithospheric thicknesses beneath late Archean continental crust. Archean granite-greenstone terranes reflect steep geotherms (50–70°C/km) while high-grade terranes reflect moderate geotherms similar to present continental crust with high heat flow (25–40°C/km). Corresponding lithosphere thicknesses for each terrane during the late Archean are 35–50 km and 50–75 km, respectively.Early Archean ( 3.0 b.y.) greenstones differ from late Archean ( 2.7 b.y.) greenstones by the rarity or absence of andesite and graywacke and the relative abundance of pelite, quartzite, and komatiite. Mature clastic sediments in early greenstones reflect shallow-water, stable-basin deposition. Such rocks, together with granite-bearing conglomerate and felsic volcanics imply the existence of still older granitic source terranes. The absence or rarity of andesite in early greenstones reflects the absence of tectonic conditions in which basaltic and tonalitic magmas are modified to produce andesite.A model is presented in which early Archean greenstones form at the interface between tonalite islands and oceanic lithosphere, over convective downcurrents; high-grade supracrustals form on stable continental edges or interiors; and late Archean greenstones form in intracontinental rifts over mantle plumes.  相似文献   
19.
Abstract

Travel time and time of concentration Tc are important time parameters in hydrological designs. Although Tc is the time for the runoff to travel to the outlet from the most remote part of the catchment, most researchers have used an indirect method such as hydrograph analysis to estimate Tc. A quasi two-dimensional diffusion wave model with particle tracking for overland flow was developed to determine the travel time, and validated for runoff discharges, velocities, and depths. Travel times for 85%, 95% and 100% of particles arrival at the outlet of impervious surfaces (i.e. Tt85, Tt95, and Tt100) were determined for 530 model runs. The correlations between these travel times and Tc estimated from hydrograph analysis showed a significant agreement between Tc and Tt85. All the travel times showed nonlinear relationships with the input variables (plot length, slope, roughness coefficient, and effective rainfall intensity) but showed linear relationships with each other.
Editor D. Koutsoyiannis; Associate editor S. Grimaldi  相似文献   
20.
One-dimensional vertical and three-dimensional fine-resolution numerical models of sediment transport have been developed and applied to the Torres Strait region of northern Australia. The one-dimensional model, driven by measured waves and currents, was calibrated against measured suspended sediment concentrations using a sequential data assimilation algorithm. The algorithm produced a good match between model and data, but this was achieved only by allowing some temporal variability in parameter values, suggesting that there were underlying uncertainties in the model structure and forcing data. Implications of the assimilation results to the accuracy of the numerical modelling are discussed and the need for observational programmes having an extensive spatial and temporal coverage is highlighted. The three-dimensional sediment model, driven by modelled waves and currents, simulates sediment transport over the shelf during the monsoon and trade-wind seasons covering 1997–2000. The model predicts strong seasonal variability of the sediment transport on the shelf attributed to seasonally varying hydrodynamics, and illustrates significant inter-annual variability of the sediment fluxes driven by extreme events. The developed model provides a platform for testing scientific hypothesis. With additional calibration, including uncertainty analysis, it can also be used in a management context.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号