首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
地球物理   1篇
地质学   8篇
海洋学   1篇
自然地理   14篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
排序方式: 共有24条查询结果,搜索用时 93 毫秒
21.
The usability of subfossil Cladocera assemblages in reconstructing long-term changes in lake level was examined by testing the relationship between Cladocera-based planktonic/littoral (P/L) ratio and water-level inference model in a surface-sediment dataset and in a 2000-yr sediment record in Finland. The relationships between measured and inferred water levels and P/L ratios were significant in the dataset, implying that littoral taxa are primarily deposited in shallow littoral areas, while planktonic cladocerans accumulate abundantly mainly in deepwater locations. The 2000-yr water-level reconstructions based on the water-level inference model and P/L ratio corresponded closely with each other and with a previously available midge-inferred water-level reconstruction from the same core, showing a period of lower water level around AD 300–1000 and suggesting that the methods are valid for paleolimnological and -climatological use.  相似文献   
22.
Mid-Holocene changes in vegetation, palaeohydrology and climate were investigated from the sediments of Lake Vankavad in the northern taiga of the Usa Basin, NE European Russia, through the analysis of pollen, plant macrofossils, Cladocera and diatoms. Lake Vankavad was probably formed at ca. 5000 BP (ca. 5600 cal. BP) and initially it was shallow with a littoral cladoceran fauna. Macrofossil and pollen results suggest that dense Betula-Picea forests grew in the vicinity and the shore was close to the sampling point. At ca. 4600 BP (ca. 5400 cal. BP) the water level rose coincident with the decrease in the density and area of forests, probably caused by cooling climate and accelerated spread of mires. There was also a further rise in the water level at ca. 3500 BP (ca. 3800 cal. BP). The initiation of the lake, followed by two periods of rising water-level, as well as the increase in mire formation, was a consequence of a rise in groundwater level. This probably reflects lower evapotranspiration in a cooling mid-Holocene climate and/or higher precipitation in the lowland area. Also the decreased forest density and area may have contributed to the lower evapotranspiration. It is also possible that permafrost aggradation or changes in peat ecosystems might have affected the hydrological conditions in the area.  相似文献   
23.
Major and trace elements, minerals and grain-size were analysed from a sediment core covering the last 4,000 years of an Austrian Alpine lake (Oberer Landschitzsee, ObLAN, 2,076 m a.s.l.). These analyses were combined with autumn and spring temperature anomalies and ice-cover estimated from a diatom and chrysophyte cyst, thermistor-based regional calibration dataset and selected pollen markers published previously. Diatom-inferred pH (Di-pH) and DOC (Di-DOC) completed the multi-proxy approach, which, together with ordination techniques (PCA and RDA), helped (1) to confirm proposed climatic patterns and hypotheses, and (2) to disentangle the complex interactions between climatic and anthropogenic impacts. Shifts in chemical and physical weathering, erosion, production, lake stratification, redox potentials and air pollution were the major processes that have affected Oberer Landschitzsee in relation to climate, lake/catchment interactions, and human impact. Geochemistry supported the finding that the four waves of high-altitude land use (Early to Middle Bronze, ca. 1,800–1,300 B.C.; Late Bronze to Hallstatt, ca. 1,000–500 B.C.; Celtic to Roman, ca. 300 B.C.–400 A.D.; and Medieval, ca. 1,000–1,600 A.D.) were coupled mainly with warm periods. Increased production, onset of lake stratification, and the deterioration of hypolimnetic oxygen conditions were the major changes governing in-lake processes during climate warming. They resulted in specific element assemblages associated with organic matter accumulation (Br), oxygen depletion (As, Ga, Cu, S), and changes in redox (Fe/Mn). The Se/Di-DOC ratio was introduced to track shifts between in-lake production and allochthonous sources. Nutrient loading from pastures, coupled with climate warming, could explain that in-lake production was highest during Roman and Medieval land use. Lithogenic elements mainly originated from chemical weathering of silicate bedrock and they increased when intense land-use was coupled with climate deterioration and/or increased humidity. These perturbations were highest during a High Medieval climate fluctuation around 1,000 A.D. The association of sand with LOI and C/N and the decoupling of sand from quartz and feldspar separates erosion from physical weathering. Di-DOC, S, and C/N showed hybrid characters in relation to climate and human impact. The mineral proportions indicated gradients in relation to weathering, snow-cover and running waters, as well as vegetation. Air pollution by metallurgic industries, starting during the High Medieval and culminating during the Late Medieval, caused lead accumulation and could have contributed to As and S enrichment. Corresponding features in the distribution of selected elements and pollen tracers, as well as changes in mineral proportions, supported the hypotheses of shifts in seasonal climate and an overall trend towards more continental climate conditions since Medieval times.  相似文献   
24.
A sediment core section from Längsee, a small meromictic lake in the southern Alpine lowland (Carinthia, Austria) close to the Würmian ice margin, was investigated by means of diatoms and pollen. The main aims of the study were to reconstruct water temperature as a signal of climate change during the last glacial termination, compare the aquatic and terrestrial response to the changing climate, and place our findings into a climatic frame on the northern hemispheric scale. A calibration data set (ALPS06) of 116 lakes was constructed using data from newly studied lakes and from two previously published data sets and we established a transfer function for predicting summer epilimnetic water temperatures (SEWT). A locally weighted weighted average regression and calibration model (R jack 2  = 0.89; RSMEP = 1.82°C) was applied to the fossil diatom assemblages in order to reconstruct SEWT. Three major sections were distinguished in the time window of approximately 19–13 cal ka BP, which fitted well with the oxygen isotope curve and the isotope-event stratigraphy from the Greenland ice-core GRIP. The first section was a warming period (SEWT range from 11.6 to 18.0°C; average 15.8°C = ca. 6°C below present) called the Längsee oscillation, which probably correlates with the warmer sub-section (GS-2b) of the Greenland Stadial 2. The subsequent section represents a climate cooling, called the Längsee cold period (SEWT range between 10.6 and 15.9°C; average 12.9°C), which probably corresponds with the sub-section GS-2a of the Greenland Stadial 2, the Heinrich 1 cold event of the North Atlantic, and partially the Gschnitz Stadial in the Alps. The Längsee cold period shows a tri-partition: Two colder phases are separated by a warmer inter-phase. The passive ordination of the core sample scores along maximum water depth indicated that the Längsee cold period was drier than the Längsee oscillation. Strong short-term fluctuations during the Längsee oscillation and the Längsee cold period indicate climate instability. The third section represented climate warming during the Längsee late glacial interstadial (=Greenland Interstadial 1, GI-1) with an average SEWT of 17.5°C. From the minor climatic fluctuations during this interstadial, mainly indicated by pollen, the fluctuation most likely related to the Gerzensee oscillation showed a SEWT decline. During the early immigration and expansion period of shrubs and trees, aquatic and terrestrial records showed distinct discrepancies that might have arose because of time lags in response and differences in sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号