首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
  国内免费   3篇
地球物理   11篇
地质学   33篇
海洋学   3篇
天文学   1篇
自然地理   8篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   6篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   6篇
  2009年   7篇
  2008年   2篇
  2007年   2篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1986年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
51.
Lake metabolism scales with lake morphometry and catchment conditions   总被引:1,自引:0,他引:1  
We used a comparative data set for 25 lakes in Denmark sampled during summer to explore the influence of lake morphometry, catchment conditions, light availability and nutrient input on lake metabolism. We found that (1) gross primary production (GPP) and community respiration (R) decline with lake area, water depth and drainage ratio, and increase with algal biomass (Chl), dissolved organic carbon (DOC) and total phosphorus (TP); (2) all lakes, especially small with less incident light, and forest lakes with high DOC, have negative net ecosystem production (NEP < 0); (3) daily variability of GPP decreases with lake area and water depth as a consequence of lower input of nutrients and organic matter per unit water volume; (4) the influence of benthic processes on free water metabolic measures declines with increasing lake size; and (5) with increasing lake size, lake metabolism decreases significantly per unit water volume, while depth integrated areal rates remain more constant due to a combination of increased light and nutrient limitation. Overall, these meta-parameters have as many significant but usually weaker relationships to whole-lake and benthic metabolism as have TP, Chl and DOC that are directly linked to photosynthesis and respiration. Combining water depth and Chl to predict GPP, and water depth and DOC to predict R, lead to stronger multiple regression models accounting for 57–63% of the variability of metabolism among the 25 lakes. It is therefore important to consider differences in lake morphometry and catchment conditions when comparing metabolic responses of lakes to human impacts.  相似文献   
52.
Isoetids, as indicators of near-pristine softwater lakes, have a high priority in national and international (European Water Directive Framework) assessments of ecological lake quality. Our main goal was to identify the most important environmental factors that influence the composition of plant communities and specifically determine the presence and abundance of the isoetid Lobelia dortmanna in NW European softwater lakes. Geographical position and composition of surface water, porewater, sediment and plant communities were examined in 39 lakes in four regions (The Netherlands, Denmark, West Norway and East Norway) distributed over a 1,200-km long distance. We confirmed that lake location was accompanied by significant changes in environmental variables between NW European lakes. Lake location was the single most important determinant of vegetation composition and it had significant individual contributions independent of the coupling to environmental variables. This influence of location was supported by a significant decline of community similarity with geographical distance between pairs of lakes at regional, inter-regional and international scales. Combining the geographical position with environmental variables for surface water, porewater and sediment significantly improved prediction of vegetation composition. Specifically, the combination of latitude, surface water alkalinity, porewater phosphate and redox potential offered the highest correlation (BIO ENV correlation 0.66) to vegetation composition. This complex analysis can also account for high sediment variability in the littoral zone of individual lakes, by using site-specific physico-chemical sediment factors, and offer better predictions of vegetation composition when lake water chemistry is relatively homogeneous among lakes within regions.  相似文献   
53.
The fault trace of the 12 November 1999 earthquake in theDüzce-Bolu region in Anatolia crossed the alignment of a 2.4 kmviaduct in Kaynali that had been carefully surveyed. The builders of theviaduct, the ASTALDI-BAYINDIR Co., resurveyed the viaduct after theearthquake. We repeated the survey for approximately one kilometre of theeastern end of the viaduct and obtained essentially identical results. Thoughit was unfortunate that the earthquake damaged the new structure, the piersdid produce a very rare record of ground deformation of an earthquake.In effect, the viaduct was a giant strain gage that yielded reliable data aboutground movement and distortion near a fault. This paper describes thesurvey data and their evaluation leading to convincing evidence that (a) thefault trace must be considered, not as a fault line or plane, but as a faultzone with a finite width and that (b) the structural damage within the zonewas caused, not primarily by ground acceleration, but by ground distortion.Along the right-lateral fault at Kaynali, the fault zone consists ofright-lateral movement at the main trace, a zone of right-lateral distortionnear the trace, bounded by left-lateral distortion. The 12 November 1999event in Turkey, like the ground deformation and fracturing at Landers,California (Johnson et al., 1994, 1996), thus affirmed a forgottenconclusion from the studies by Lawson (1908), Gilbert and Reid (1910)of the 1906 San Francisco earthquake that earthquake ruptures typicallyoccur throughout zones or belts, rather than along linear traces or planes.  相似文献   
54.
We present a comparative analysis of lower depth limits for growth of eelgrass, large brown algae and other macroalgae measured by SCUBA-diving along 162 transects in 27 Danish fjords and coastal waters, coupled to 1,400 data series of water chemistry (especially nitrogen) and Secchi depth transparency collected between March and October. Danish coastal waters are heavily eutrophied and characterized by high particle concentrations, turbid water and lack of macrophyte growth in deep water. Median values are 3.6 m for Secchi depth and median lower-depth limits are 4.0 m for eelgrass, 5.3 m for brown algae and 5.0 m for other macroalgae. Depth limits for growth of eelgrass and macroalgae increase linearly with transparency in the coastal waters. The relationships are highly significant (p<10−6) and transparency accounts for about 60% of the variability of depth limits. Eelgrass extends approximately to half the maximum depth of macroalgae, presumably because of greater respiratory costs to maintain the below-ground rhizomes and roots of eelgrass, which often constitutes half the plant weight. As a reflection of the importance of total nitrogen (TN) in controlling phytoplankton biomass and thus Secchi depth in coastal marine waters, we found that TN could explain 48–73% of the variation in depth limits of eelgrass and macroalgae, according to a multiplicative model (Y=aXb). As with Secchi depth, the relationship to eelgrass showed a lower slope, reflecting the higher respiratory costs of eelgrass. The models show great sensitivity and a profound quantitative response with proportional effects on Secchi depth and depth limits when total-N concentrations are reduced.  相似文献   
55.
Subduction zones of continental, transitional, and oceanic settings, relative to the nature of the overriding plate, are compared in terms of trace element compositions of mafic to intermediate arc rocks, in order to evaluate the relationship between subduction parameters and the presence of subduction fluids. The continental Chilean Southern Volcanic Zone (SVZ) and the transitional to oceanic Central American Volcanic Arc (CAVA) show increasing degrees of melting with increasing involvement of slab fluids, as is typical for hydrous flux melting beneath arc volcanoes. At the SVZ, the central segment with the thinnest continental crust/lithosphere erupted the highest-degree melts from the most depleted sources, similar to the oceanic-like Nicaraguan segment of the CAVA. The northern part of the SVZ, located on the thickest continental crust/lithosphere, exhibits features more similar to Costa Rica situated on the Caribbean Large Igneous Province, with lower degrees of melting from more enriched source materials. The composition of the slab fluids is characteristic for each arc system, with a particularly pronounced enrichment in Pb at the SVZ and in Ba at the CAVA. A direct compositional relationship between the arc rocks and the corresponding marine sediments that are subducted at the trenches clearly shows that the compositional signature of the lavas erupted in the different arcs carries an inherited signal from the subducted sediments.  相似文献   
56.
In this paper, we constrain the input and output fluxes of H2O, Cl and S into the southern-central Chilean subduction zone (31°S–46°S). We determine the input flux by calculating the amounts of water, chlorine and sulfur that are carried into the subduction zone in subducted sediments, igneous crust and hydrated lithospheric mantle. The applied models take into account that latitudinal variations in the subducting Nazca plate impact the crustal porosity and the degree of upper mantle serpentinization and thus water storage in the crust and mantle. In another step, we constrain the output fluxes of the subduction zone both to the subcontinental lithospheric mantle and to the atmosphere–geosphere–ocean by the combined use of gas flux determinations at the volcanic arc, volume calculations of volcanic rocks and the combination of mineralogical and geothermal models of the subduction zone. The calculations indicate that about 68 Tg/m/Ma of water enters the subduction zone, as averaged over its total length of 1,480 km. The volcanic output on the other hand accounts for 2 Tg/m/Ma or 3 % of that input. We presume that a large fraction of the volatiles that are captured within the subducting sediments (which accounts for roughly one-third of the input) are cycled back into the ocean through the forearc. This assumption is however questioned by the present lack of evidence for major venting systems of the submarine forearc. The largest part of the water that is carried into the subduction zone in the crust and hydrated mantle (accounting for two-thirds of the input) appears to be transported beyond the volcanic arc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号