首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   9篇
测绘学   6篇
大气科学   20篇
地球物理   99篇
地质学   150篇
海洋学   52篇
天文学   20篇
综合类   6篇
自然地理   42篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   6篇
  2016年   10篇
  2015年   12篇
  2014年   13篇
  2013年   23篇
  2012年   13篇
  2011年   19篇
  2010年   10篇
  2009年   23篇
  2008年   16篇
  2007年   18篇
  2006年   19篇
  2005年   15篇
  2004年   20篇
  2003年   15篇
  2002年   12篇
  2001年   8篇
  2000年   10篇
  1999年   6篇
  1998年   14篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有395条查询结果,搜索用时 31 毫秒
331.
Sustainable water quality management requires a profound understanding of water fluxes (precipitation, run-off, recharge, etc.) and solute turnover such as retention, reaction, transformation, etc. at the catchment or landscape scale. The Water and Earth System Science competence cluster (WESS, http://www.wess.info/) aims at a holistic analysis of the water cycle coupled to reactive solute transport, including soil–plant–atmosphere and groundwater–surface water interactions. To facilitate exploring the impact of land-use and climate changes on water cycling and water quality, special emphasis is placed on feedbacks between the atmosphere, the land surface, and the subsurface. A major challenge lies in bridging the scales in monitoring and modeling of surface/subsurface versus atmospheric processes. The field work follows the approach of contrasting catchments, i.e. neighboring watersheds with different land use or similar watersheds with different climate. This paper introduces the featured catchments and explains methodologies of WESS by selected examples.  相似文献   
332.
Reservoirs can be viewed as sentinels of their catchments and a detailed monitoring of reservoir systems informs about biogeochemical and hydrological processes at the catchment scale. We developed a comprehensive online monitoring system at Rappbode reservoir, the largest drinking water reservoir in Germany, and its inflows. The Rappbode Reservoir Observatory comprises of a set of online-sensors for the measurement of physical, chemical, and biological variables and is complemented by a biweekly limnological sampling schedule. Measurement stations are deployed at the four major inflows into the system, at the outlets of all pre-reservoirs, as well as in the main reservoir. The newly installed monitoring system serves both scientific monitoring and process studies, as well as reservoir management. Particular emphasis is paid to the monitoring of short-term dynamics and many variables are measured at high temporal resolution. As an example, we quantitatively documented a flood event which mobilised high loads of dissolved organic carbon and changed the characteristics of the receiving reservoir from eutrophic to dystrophic within a few days. This event could have been completely missed by conventional biweekly sampling programs, but is relevant for biogeochemical fluxes at the catchment scale. We also show that the high frequency data provide a deeper insight into ecosystem dynamics and lake metabolism. The Rappbode Reservoir Observatory; moreover, offers a unique study site to apply, validate, and develop state of the art lake models to improve their predictive capabilities.  相似文献   
333.
Multi-point statistics (MPS) has emerged as an advanced geomodeling approach. A practical MPS algorithm named snesim (simple normal equations simulation), which uses categorical-variable training images, was proposed in 2001. The snesim algorithm generates a search tree to store the occurrence statistics of all patterns in the training image within a given set of search templates before the simulation proceeds. The snesim search tree concept makes MPS simulation central processing unit efficient but consumes large amounts of memory, particularly when three-dimensional training images contain complex patterns and when a large search template is required to ensure optimal reproduction of the image patterns. To crack the memory-restriction bottleneck, we have developed a compact search tree that contains the same information but reduces memory cost by one order of magnitude. Furthermore, the compact structure also accelerates MPS simulation significantly. Such remarkable improvement makes MPS a more practical tool to use in building the large and complex three-dimensional facies models required in the oil and gas industry.  相似文献   
334.
Hourly wind data from a network of climate stations in the north-central United States (drawn from the states of Illinois, lowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin) are analyzed to evaluate the efficacy of spatial analyses of near-surface wind speed and power. Spatial autocorrelation functions (acfs) were calculated at a number of timescales: annual, monthly, daily, and hourly. Annual wind speeds have virtually no coherent distance-decay relationship; monthly data produce a more consistent relationship, but still exhibit a large amount of scatter. Both daily and hourly data have classical decay with increasing distance between stations and there appears to be an optimal level of temporal aggregation, near the daily timescale, for spatial analysis of wind. In general, however, spatial acfs overestimate the spatial coherence of both wind speed and power. Temporal nonstationarities in wind data (i.e., diurnal and annual cycles) bias spatial autocorrelation functions and need to be removed before using spatial acfs to estimate characteristics of wind fields. Because mean absolute differences (MAD) of interstation wind speed and power are less affected by temporal nonstationarities, they produce more-robust representations of the spatial variability of wind speed and power. As a result, spatial MADs are recommended over spatial acfs for analyzing spatial coherence and decay of any spatial variable that contains nonstationarities. Methods for improving the spatial analysis of wind are discussed. [Key words: wind energy, spatial autocorrelation, spatial analysis, nonstationarity, north-central United States.]  相似文献   
335.
336.
Application of transition metal isotope tracers in global change research   总被引:1,自引:0,他引:1  
High-precision isotope composition determinations using multicollector, magnetic-sector inductively coupled plasma mass spectrometry (MC-ICPMS) have recently revealed that some transition metal isotopes such as those of Mo, Fe, Cu, Zn etc. can be used as biogeochemical tracers in global change research.The Mo isotope system may be useful in paleoredox investigations indicating that δ^97 ^95Mo in seawater may co-vary with changes in the relative proportions of anoxic and oxic sedimentation in the ocean, and that this variation may be recorded in δ^97 ^95Mo of anoxic sediments. The Mo continental flux into the oceans and the global Mo isotope budget can be estimated from δ^97 ^95M0 values. The Fe isotope composition in seawater is an important issue because Fe plays a controlling role in biological productivity in the oceans and its abundance in seawater may have substantial effect on climate changes. Iron isotope fractionations could result from bio- and abio-processes and have about 0.1% variation ( δ^56 ^54Fe), so Fe isotopes considered alone cannot be used to distinguish the products of abiotic and biotic Fe processing in geological records. Cu and Zn isotopes are also used as biogeochemical tracers, but the researches are relatively less. This review mainly focuses on the methods for preparation, purification and determination of new isotope tracer samples, and on isotope applications in marine environmental changes.  相似文献   
337.
Micro-organisms must be included in any hydrogeochemical modelling efforts in the ongoing Swedish programme to characterize potential sites for the geological disposal of spent nuclear fuel. This paper presents the development and testing of several methods for estimating the total numbers of micro-organism groups and amounts of their biomass in groundwater, their diversity, and the rates of microbial processes. The enumeration and cultivation methods were tested and evaluated on groundwater from boreholes at 450 m depth in the Äspö Hard Rock Laboratory (HRL), Sweden, and from two potential sites for a final repository of spent nuclear fuel, Forsmark and Laxemar. The reproducibility of the methods between parallel samples and over time was investigated and found to be excellent. Nitrate-, iron-, manganese- and sulphate-reducing bacteria and acetogens and methanogens were found in numbers up to approximately 87,000 cells L−1 groundwater from the studied sites. A methodology that analysed microbial process rates was developed and tested under open and closed controlled in situ conditions in a circulation system situated 447 m underground in the MICROBE laboratory at the Äspö HRL. The sulphide and acetate production rates were determined to be 0.08 and 0.14 mg L−1 day−1, respectively. The numbers of sulphide- and acetate-producing micro-organisms increased concomitantly in the analysed circulating groundwater. Flushing the sampled circulation aquifer created an artefact, as it lowered the sulphide concentration. Microbial and inorganic processes involved in sulphur transformations are summarized in a conceptual model, based on the observations and results presented here. The model outlines how dissolved sulphide may react with Fe(III) and Fe(II) to form solid phases of iron sulphide and pyrite. Sulphide will, consequently, continuously be removed from the aqeous phase via these reactions, at a rate approximately equalling the rate of production by microbial sulphate reduction.  相似文献   
338.
Naturally occurring stable and radioactive isotopes were used as environmental tracers to investigate contaminant metal mobilization processes in a metal smelter dump mainly consisting of slag. Water emerging from the dump at a spring is heavily contaminated by metals. The smelter dump contains minor amounts of flue dust, a material which shows a high potential for metal mobilization. Nearby dumps mainly consist of low-grade ore. Concentration patterns of 238U, 226Ra and 210Pb determined in sediment deposited close to the contaminated spring reveal the flue dust to be the major local metal source rather than the slag or the low-grade ore. Contamination pathways inside the dump were investigated using hydrological, chemical and isotopic data. Strong negative correlation between water discharge and metal concentration in the spring water suggests, besides short-term dilution of the metal concentration by direct rainwater runoff, distinct long-term dilution of the spring water by groundwater being discharged at a significantly increased rate as a result of heavy rains. δ18O and δD signatures of rain, local groundwater and spring water confirm the importance of groundwater derived from the local aquifer. Another hydrological component with importance for metal mobilization was found to be water that is recharged in the dump itself. Tritium analysis allowed an assessment of the probable residence time of that water component in the smelter dump. Since that water component seems to represent a major local contamination pathway the findings of the study are of substantial importance for site remediation planning. As a primary result it could be stated that covering the dump would not result in any noteworthy short-term improvement of the spring water quality. First significant effects would only be visible after 2–3 decades at the earliest.  相似文献   
339.
340.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号