首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
地球物理   4篇
地质学   18篇
天文学   1篇
自然地理   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
Interest in the Holocene development of small to medium-sized river catchments in Western and Central Europe in relation to changes in land use and climate has increased over the past years. In this study we reconstruct the Holocene landscape development and fluvial dynamics of the Geul River (The Netherlands) and the main forcing mechanisms of environmental change. Field studies were carried out and we used OSL and 14C dating methods to reconstruct the Holocene valley development. Our study shows that 2 periods of deforestation (during the Roman Period and the High Middle Ages) led to severe soil erosion and increased floodplain sedimentation in the catchment of the Geul River, possibly combined with periods of increased wetness during the High Middle Ages. Alluvial fans have been active since the Roman deforestation phase. Our results show that the Geul catchment is highly sensitive to changes in land use.  相似文献   
22.
The Lower Tagus Valley in Portugal contains a well-developed valley-fill succession covering the complete Late Pleistocene and Holocene periods. As large-scale stratigraphic and chronologic frameworks of the Lower Tagus Valley are not yet available, this paper describes facies, facies distribution, and sedimentary architecture of the late Quaternary valley fill. Twenty four radiocarbon ages provide a detailed chronological framework. Local factors affected the nature and architecture of the incised valley-fill succession. The valley is confined by pre-Holocene deposits and is connected with a narrow continental shelf. This configuration facilitated deep incision, which prevented large-scale marine flooding and erosion. Consequently a thick lowstand systems tract has been preserved. The unusually thick lowstand systems tract was probably formed in a previously (30,000–20,000 cal BP) incised narrow valley, when relative sea-level fall was maximal. The lowstand deposits were preserved due to subsequent rapid early Holocene relative sea-level rise and transgression, when tidal and marine environments migrated inland (transgressive systems tract). A constant sea level in the middle to late Holocene, and continuous fluvial sediment supply, caused rapid bayhead delta progradation (highstand systems tract). This study shows that the late Quaternary evolution of the Lower Tagus Valley is determined by a narrow continental shelf and deep glacial incision, rapid post-glacial relative sea-level rise, a wave-protected setting, and large fluvial sediment supply.  相似文献   
23.
The present paper aims to reconstruct the Lower Tagus Valley flooding history for the last ca. 6500 a, to explore the suitability of pollen‐based local vegetation development in supporting the reconstruction of flooding history, and to explain fluvial activity changes in terms of allogenic (climate, human impact) and autogenic (system intrinsic) processes. The flooding history has been determined by cored sedimentary records located ~18 km apart in distal, low‐energy backswamps on both sides of the Tagus channel. In these low‐energy backswamps, fine‐grained sediment layers deposited from suspended load of overbank flood water reflect periods with multiple overbank floods. By means of a multi‐proxy approach (sedimentology, magnetic susceptibility, grain size, loss‐on‐ignition, carbonate content and pollen), sedimentary and environmental changes were identified. At both sites, synchronous lithological intervals accumulated, suggesting a common origin for the changes in fluvial activity since ca. 6500 cal. a BP. Based on lithological changes, three phases of high fluvial activity (6500–5500, 4900–3500 and 1000–0 cal. a BP) and two phases of low fluvial activity (5500–4900 and 3500–1000 cal. a BP) were identified. Two periods with dominant allogenic controls on fluvial activity in the Lower Tagus Valley were identified: relative sea level (6500–5500 cal. a BP) and human impact (1000–0 cal. a BP). During the intermediate period, changes in fluvial activity may have been caused by climate (5500–1000 cal. BP), but unambiguous correlations are difficult to make. This is due to the way allogenic controls are translated through the fluvial system, the geomorphological differences between upstream and downstream studies and autogenic processes. The comparison of local vegetation development and flooding phases as reconstructed using sedimentology shows a limited added value of using local palynology as a proxy for fluvial activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
24.
The Geul River, located in the south‐eastern part of The Netherlands, is a meandering river with a planform shape characterized by large loops consisting of multiple bends. We evaluate the effect(s) of groundwater flow on the shapes of meanders as a possible explanation for the multi‐bend loops, using a combined meandering–groundwater computer model. In the model seeping groundwater enhances bank erodibility. Based on the simulation results, we present a conceptual, generalized model for groundwater–meandering interaction, based on wavelength selection and fixation effects. Wavelength selection occurs because of the positive feedback between growing meander bends and groundwater flow patterns and velocities. The promoted wavelengths have the same spatial scale as the groundwater flow system in the aquifer underlying the floodplain. In the case of the Geul River these wavelengths are of the order of 100 m. Since groundwater flow velocities are largest close to the recharging hill‐slopes, the seepage‐enhanced bank erodibilities are at a maximum near the floodplain limits. At these locations the difference in erodibility between banks facing the floodplain and those facing the hill slopes is large, so it is difficult for the river to migrate away from the floodplain limits. This causes long stretches of the river to be aligned along the floodplain limits, which we term a fixation effect. This mechanism best explains the multi‐bend loops of the Geul River. The general interaction between groundwater flow and meandering is site specific since it depends on climatic, fluvial and hydrogeological parameters. The Geul is characterized by a wide floodplain and steep hill‐slopes, and it is underlain by coarse‐grained deposits with good aquifer properties, favoring an important groundwater system. Since this kind of river frequently occurs, our results could apply to many other river systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
25.
Climate change during the Last Glacial is considered as a major forcing factor of fluvial system changes. A continuous succession of fluvial sediments, reflecting adaptations to climate change from the Weichselian Middle Pleniglacial (oxygen isotope stage 3) onwards, occurs in lowland river basins in the Netherlands.A comparison of the Pleniglacial and Late Glacial fluvial record in the Netherlands shows that climatic oscillations of similar magnitude did not produce changes in the fluvial sedimentary system of equal magnitude. The Late Glacial fluvial system proves to be highly sensitive to climate change. By contrast, many of the rapid climate changes that have occurred during oxygen isotope stage 3, according to the Greenland ice core record, are not detectable in the fluvial sediments. This can be explained by differences in the impact of the climate variations on drainage basin vegetation. During the Late Glacial, the tree line repeatedly shifted through the Netherlands, whereas the area remained within the tundra zone during the Middle Pleniglacial. Precipitation variations and permafrost aggradation and degradation have played a secondary role.The Weichselian fluvial succession in the Netherlands demonstrates that detection of a change in the fluvial sedimentary system and relating this change to climate change is subject to methodological limitations. The climatic significance of changes in the fluvial record should be carefully evaluated, as well as their chronology. The possibility that climate did not influence the fluvial system should always be considered as a null hypothesis in studies on fluvial successions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号