首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   1篇
地球物理   5篇
地质学   9篇
天文学   12篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1991年   2篇
  1986年   1篇
  1983年   2篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有26条查询结果,搜索用时 0 毫秒
21.
Abstract. Talnakhite occurs in an andradite skarn forming adjacent to a leucocratic quartz monzonite dike intruded into limestone at Fuka. The mineral densely contains exsolution lamellae of chalcopyrite, and the talnakhite-chalcopyrite inter-growth is intimately associated with bornite that contains chalcopyrite as a lattice-form exsolution. The chemical composition of the talnakhite acquired on an electron probe microanalyzer corresponds to Cu9.00Fe8.08S15.92, very close to the ideal chemical formula Cu9Fe8S16. Nickel is not detected. The X-ray powder diffraction lines are well indexed on a body-centered cubic cell with a = 10.589 Å. The characteristic (110) reflection of talnakhite is clearly observed at 7.49 Å. The present talnakhite retains the chalcopyrite-like colored polished surface without tarnish in air more than a month.
Talnakhite at Fuka is likely to be derived from breakdown of Cu-rich intermediate solid solution ( iss ), which was in equilibrium with Fe-rich bornite at elevated temperatures. Talnakhite thus formed has survived the subsequent cooling processes, probably because the ƒs2 was maintained in suitable levels preventing its decomposition into bornite and chalcopyrite.  相似文献   
22.
Katsuo Tanaka 《Solar physics》1991,136(1):133-149
The complex subsurface magnetic rope structure of a very flare-active isolated group (McMath 13043, July 1974) is studied by means of high-resolution evolutionary data from BBSO magnetic and velocity data. This group showed unusually fast evolution accompanied by a number of intense flares occurring on the neutral line of a spot, and provided an excellent opportunity to study the inherent relation of flare occurrence to changes of the magnetic configuration. We first examine the abnormal evolution of this group started by formation of a large, compact, reversed spot by squeezing of multipoles. The configuration was deformed by penetration into the opposite polarity umbra and its subsequent disappearance, decaying by rapid shear motions. Strong transverse fields over 4000 G were detected in the penumbrae and some umbral components.Combining these data with the August 1972 region, the evolution of these isolated groups is shown to decompose into two flare-associated elementary modes: (A) shearing produced by spot growth and (B) reduction of shear as spots disappear. We propose a model of an emerging twisted magnetic knot to explain the two modes and apply realistically to the present evolution. The inferred magnetic topological structure of this region consists of tightly twisted (sheet-like) knots and a long-winding twisted rope with an internally reversed loop and a hooked bottom struture. Their consecutive emergences are suggested to explain the abnormal evolution of this 5 group. This result indicates that the origin of the concentrated flare activity in these isolated groups may be traced to internal magnetic activity responsible for forming anomalous magnetic ropes.The author died on January 2, 1990. This paper, prepared for publication at the time of his death, was edited by Professor H. Zirin.  相似文献   
23.
We show observational results on the pre-flare evolutions of H structures as well as the developments of H flares. It is shown that the chromospheric features are brought to a sheared state before flares due to motions of footpoints which correspond to particular sunspot motions. Generally in evolutions of the chromospheric features it is found that motions and reconnections of the footpoints play essential roles. The following three stages are found for development of the neutral line filament before flares: (1) formation of a filament as a result of reconnection; (2) increase of the shear of the filament due to the shear motion; and (3) reconnection of fine components of the filament to form an elongated component immediately before flares. We further show developments of two particular flares with and without the filament, and point out basic release processes of flares. The flare that occurred at the filament (July 5, 1974) started with the activation of the elongated component of the filament after the process (3). The main phase of a two-ribbon flare is considered as the rises of short components of the filament triggered by the rising motion of the elongated component. The flare of September 10, 1974 occurred at the region where fibrils connect the sunspots in distorted form. Pre-flare distortion was produced by translational rotation of the sunspot. Development of this two-ribbon flare is interpreted as being due to successive rises of the fibrils with a self-trigger mechanism.On leave from Tokyo Astronomical Observatory (present address).  相似文献   
24.
We present the analysis of observations of the August flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms and spectra. In each flare the observations fit a model of particle acceleration in the chromosphere with emission produced by impact and by heating by the energetic electrons and protons. The region showed inverted polarity and high gradients from birth, and flares appear due to strong magnetic shears and gradients across the neutral line produced by sunspot motions. Post flare loops show a strong change from sheared, force-free fields parallel to potential-field-like loops, perpendicular to the neutral line above the surface.We detected fast (5 s duration) small (1') flashes in 3835 at the footpoints of flux loops in the August 2 impulsive flare at 1838 UT, which may be explained by dumping of > 50 keV electrons accelerated in individual flux loops. The flashes show excellent time and intensity agreement with > 45 keV X-rays. In the less impulsive 2000 UT flare a less impulsive wave of emission in 3835 moved with the separating footpoints. The thick target model of X-ray production gives a consistent model for X-ray, 3835 and microwave emission in the 18:38 UT event.Spectra of the August 7 flare show emission 12 Å FWHM in flare kernels, but only 1 to 2 Å wide in the rest of the flare. The kernels thus produce most of the H emission. The total emission in H in the August 4 and August 7 flares was about 2 × 1030 erg. We belive this dependable value more accurate than previous larger estimates for great flares. The time dependence of total H emission agrees with radio and X-ray data much better than area measurements which depend on the weaker halo.Absorption line spectra show a large (6 km/s-1) photospheric velocity discontinuity across the neutral line, corresponding to sheared flow across that line.This work has been supported by NASA under NGR 05 002 034, NSF Atmospheric Sciences program under GA 24015, and AFCRL under FI9628-73-C-0085.  相似文献   
25.
The two Bragg crystal spectrometers on board Hinotori provide a new technique for measuring linear polarization of the soft X-ray line emission from solar flares. The results of the measurements of large (X class) flares are given in this paper, and the polarization degree averaged over the soft X-ray maximum phases is estimated to be less than 4%.  相似文献   
26.
A Lower Devonian (Emsian) tentaculite fauna including Nowakia acuaria [Richer, R., 1854. Thüringische Tentaculiten. Zeitschr. Deutsch. Geol. Gesellsch. 6, 275–290] occurs in black shale in the basal part of a siliciclastic sequence exposed north of Satun, southern peninsular Thailand. Similar tentaculite beds with Nowakia have been reported from several areas in the Fang, Sri Sawat, and Trang areas of Thailand, the Langkawi Islands and the Mahang–Baling areas of Malaysia. The depositional environments in which the tentaculite-bearing black shale accumulated extended from modern northern Thailand to northwestern Malaysia during the Early Devonian (Emsian).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号