首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   4篇
  国内免费   2篇
测绘学   2篇
大气科学   14篇
地球物理   21篇
地质学   28篇
海洋学   39篇
天文学   37篇
自然地理   14篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   8篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   8篇
  2001年   9篇
  2000年   3篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1975年   1篇
  1972年   1篇
排序方式: 共有155条查询结果,搜索用时 62 毫秒
51.
U–Pb ages of detrital zircons and white mica K–Ar ages are obtained from two psammitic schists from the western and eastern units of the Sanbagawa Metamorphic Belt located in the Sakuma–Tenryu area. The detrital zircons in the sample from the western unit (T1) show an age cluster around 95 Ma, and the youngest age in the detrital zircons is 94.0 ± 0.6 Ma. The detrital zircons in the sample from the eastern unit (T5) show a main age cluster in the Late Cretaceous with some older ages, and the youngest age in the detrital zircons is 72.8 ± 0.9 Ma. The youngest zircon ages restrict the older limit of the depositional ages of each sample. White mica K–Ar ages of T1 and T5 are 69.8 ± 1.5 Ma and 56.1 ± 1.2 Ma, respectively, which indicate the age of exhumation and restrict the younger limit on the depositional age of each sample. The results show that the western and eastern units were different in their depositional and exhumation ages, suggesting the episodic subduction and exhumation of the Sanbagawa Belt in the Sakuma–Tenryu area. These results also suggest simultaneous existence of subduction and exhumation paths of metamorphic rocks in the high‐P/T Sanbagawa Metamorphic Belt.  相似文献   
52.
Characterization of the sediment composition of tidal flats and monitoring of their spatiotemporal changes has become an important part of the sustainable management of coastal environments. To accurately classify sediments through remote sensing, a comprehensive understanding of sediment reflectance spectra is indispensable. The present laboratory-based study explores the performance of the high spatial resolution (10?×?10 m) Advanced Land Observing Satellite (ALOS) launched in 2006. Relationships between reflectance spectra (bands 1 to 4) and four typical mass physical properties were investigated under wet and dry experimental conditions for intertidal sediments sampled near the Ba Lat Estuary in northern Vietnam. Reflectance in the near-infrared region corresponding to ALOS band 4 (0.76–0.89 μm) was found (1) to have a strong negative correlation with sand content (dry wt%) under both wet and dry conditions (linear correlation coefficient r?=?–0.7859 and –0.8094, respectively), (2) to increase with decreasing relative water content (%) in a given sediment type (r?=?–0.7748 to –0.9367 for mud, sandy mud, muddy sand, and sand), (3) to have a positive correlation with organic matter content (r?=?0.7610 and 0.6460 under wet and dry conditions for contents >0.20 dry wt%), and (4) to be insignificantly correlated with mineral composition assessed in terms of contents (wt%) of quartz, clay minerals, and mica group minerals. Positive relationships between reflectance and water content for the pooled data of all sediment types (r?=?0.6395) or organic matter content contrast with previous findings, and can be attributed to close interrelationships between these properties and the predominance of sand content as controlling factor of reflectance. This study clarifies that ALOS band 4 provides the most useful imagery for intertidal monitoring because its reflectance, as simulated using the laboratory data, shows the strongest correlation with sand content. In a next step, these experimental findings should be verified by identifying the reflectance relationships at satellite image scales, and also considering the effects of other tidal flat features on reflectance, such as microtopography and biological surface characteristics.  相似文献   
53.
54.
Sample data in the Earth and environmental sciences are limited in quantity and sampling location and therefore, sophisticated spatial modeling techniques are indispensable for accurate imaging of complicated structures and properties of geomaterials. This paper presents several effective methods that are grouped into two categories depending on the nature of regionalized data used. Type I data originate from plural populations and type II data satisfy the prerequisite of stationarity and have distinct spatial correlations. For the type I data, three methods are shown to be effective and demonstrated to produce plausible results: (1) a spline-based method, (2) a combination of a spline-based method with a stochastic simulation, and (3) a neural network method. Geostatistics proves to be a powerful tool for type II data. Three new approaches of geostatistics are presented with case studies: an application to directional data such as fracture, multi-scale modeling that incorporates a scaling law, and space-time joint analysis for multivariate data. Methods for improving the contribution of such spatial modeling to Earth and environmental sciences are also discussed and future important problems to be solved are summarized.   相似文献   
55.
A calculation method for determining the amount of Rn isotopes and daughter products at the start of measurement (CRAS) is proposed as a more accurate means of estimating the initial Rn concentration in soil gas. The CRAS utilizes the decay law between 222Rn and 220Rn isotopes and the daughter products 218Po and 216Po, and is applicable to α-scintillation counter measurements. As Rn is both inert and chemically stable, it is useful for fault investigation based on the soil gas geochemistry. However, the total number of α particles emitted by the decay of Rn has generally been considered to be proportional to the initial Rn concentration, without considering the gas condition with respect to radioactive equilibrium. The CRAS method is shown to be effective to derive Rn concentration for soil gases under both nonequilibrium conditions, in which the total number of decays increases with time, and equilibrium conditions, which are typical of normal soil under low gas flux. The CRAS method in conjunction with finite difference method simulation is applied to the analysis of two active fault areas in Japan, and it is demonstrated that this combination could detect the sharp rises in 222Rn concentrations associated with faults. The method also allows the determination of fault geometry near the surface based on the asymmetry variation of the Rn concentration distribution when coupled with a numerical simulation of 222Rn transport. The results for the new method as applied to the two case studies are consistent with the data collected from the geological survey. It implies that the CRAS method is suitable for investigating the fault system and interstitial gas mobility through fractures. The present analyses have also demonstrated that high Rn concentrations require the recent and repeated accumulation of 222Rn parents (230Th and 226Ra) in fault gouges through deep gas release during fault movement.  相似文献   
56.
The spatial structures and propagation characteristics of coastal trapped waves (CTWs) along the southern and eastern coasts of Australia are investigated using observed daily mean sea level data and results from a high-resolution ocean general circulation model (OGCM), and by conducting sensitivity studies with idealized numerical models. The results obtained from the sea level observations show that shortterm variations, with a typical period of 1 to 2 weeks, dominate the sea level variability in the southern half of Australia. The signal propagates anticlockwise around Australia with a propagation speed of 4.5 m/s or faster in the western and southern coasts and 2.1 to 3.6 m/s in the eastern coast. Strong seasonality of the wave activity, with large amplitude during austral winter, is also observed. It turns out that the waves are mainly generated by synoptic weather disturbances in the southwestern and southeastern regions. The numerical experiment with idealized wind forcing and realistic topography confirms that the propagating signals have characteristics of the CTW both in the southern and eastern coasts. Sensitivity experiments demonstrate that the difference in the phase speed between the coasts and reduction of the amplitude of the waves in the eastern coast are attributed to the different shape of the continental shelf in each region. The structures and the propagation characteristics of the CTWs around Australia are well reproduced in OFES (OGCM for the Earth Simulator) with dominant contribution from the first mode, although meso-scale eddies may modify the structure of the CTWs in the eastern coast. It is also found that generation or reinforcement of the waves by the wind forcing in the southern part of the eastern coast is necessary to obtain realistically large amplitude of the CTWs in the eastern coast.  相似文献   
57.
58.
Extinction coefficients were measured for three kind of hydrous silicate minerals, montmorillonite, chlorite and serpentine, from 7 to 140 m. The infrared extinction coefficients of these minerals show (1) a few broad bands in the mid-infrared region and (2) a less steep wavelength-dependence in the far-infrared region, in contrast to those of high-temperature magnesium silicates. In the far-infrared region, montmorillonite shows a –0.8±0.1 dependence (, the wavelength) without any band structure, chlorite has a double maxima structure around 80 m, and serpentine shows a rather steep dependence with a small peak at 77 m.The changes of mid-infrared spectra by heating were measured. Change in chlorite spectrum is the most significant. Many fine features appear by heating and then they disappear. Above 900°C one broad feature remains around 10 m. Fine features of the montmorillonite spectrum disappear by heating. For serpentine, many new peaks appear and the spectrum resembles the spectrum of olivin. In near-infrared a band around 2.72 m disappears by heating.Extinction coefficients at very low temperatures were measured in the far-infrared region. For montmorillonite and serpentine, the spectrum is the same as that at room temperature. The double peaks of chlorite around 80 m become higher.  相似文献   
59.
Mid-infrared extinction coefficients of five natural amorphous silicates and seven synthetic glasses were measured. Three bands at about 10, 12, and 20 μm were seen for all the measured samples. The quantities of these bands are found to have good correlations with the SiO2 content of the samples. The correlations are the most remarkable for the 10 μm band. As the SiO2 content decreases, the peak wavelengthλ m shifts to longer side, the peak heightK m decreases and the full width of half maximumW increases. A quantityλ m K m W is constant within 15%. Empirical formula $$\lambda_m (\mu m) = {11.10-2.30 x 10^-2} {[SiO_2 wt.\%]} \pm 0.15$$ and $$W(\mu m) = {5.14-4.68 x 10^- 2} {[SiO_2 wt.\%]} \pm 0.30$$ are obtained for the measured samples. Therefore, the correlation is present between the 10 μm peak wavelengthλ m and peak widthW for amorphous silicates. The change in peak widthW is remarkable compared the change in peak wavelengthλ m as the SiO2 content varies. For the 12 μm band the correlations with the SiO2 content are not so good. A tendency that theλ m shifts to the red and theK m lowers as the decreasing SiO2 content are found. For the samples with SiO2 content less than 50% the 12 μm band cannot recognized as the peak. For the 20 μm band, theλ m is almost independent on SiO2 content and theK m lowers with decreasing SiO2 content. The results are compared with the observed 10 μm band of the astronomical objects. A method to estimate the SiO2 content of astronomical grain materials is proposed and 48±8% SiO2 wt.% is found corresponding to the peak wavelength of 9.7 μm and the peak width of 2.5–3.0 μm of typical celestial objects.  相似文献   
60.
We found high potential activities of alkaline phosphatase associated with particles (0.2 μm or greater size fraction) in deep waters (1000–4000 m) of the central Pacific Ocean. The potential enzyme activity at depth (0.03 – 0.3 nM h−1) was up to 50% of that at the surface (0–125 m). In contrast, activities of α- and β-d-glucosidase in the deep layer were low (generally less than 1 % of those in the upper layer), yielding up to two orders of magnitude difference in the ratio of alkaline phosphatase and α- and β-d-glucosidase activities with depth. It is unlikely that the phosphatase is actively produced by microorganisms inhabiting the deep-sea environment, where labile organic carbon supply is limited and phosphate concentration is high (2.4 – 3.0 AM). Instead, deep-water phosphatase is probably supplied by rapidly sinking particles and their subsequent fragmentation and dissolution. Different distributions of phosphatase and glucosidase indicate that sinking particles of phytoplankton origin are an important source of alkaline phosphatase enzymes in the deep sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号